Amorphous calcium carbonate: A precursor phase for aragonite in shell disease of the pearl oyster

2018 ◽  
Vol 497 (1) ◽  
pp. 102-107 ◽  
Author(s):  
Jingliang Huang ◽  
Chuang Liu ◽  
Liping Xie ◽  
Rongqing Zhang
CrystEngComm ◽  
2016 ◽  
Vol 18 (12) ◽  
pp. 2125-2134 ◽  
Author(s):  
Jingtan Su ◽  
Fangjie Zhu ◽  
Guiyou Zhang ◽  
Hongzhong Wang ◽  
Liping Xie ◽  
...  

Polymorph switching of calcium carbonate controlled by amorphous calcium carbonate-binding protein, an extrapallial fluid (EPF) protein from the pearl oyster, is investigated. The polymorph selection in nacre or pearl growth may be controlled not only by the nucleating template on the matrix but also by the physicochemical effects of EPF proteins.


2020 ◽  
Author(s):  
David Evans ◽  
William Gray ◽  
James Rae ◽  
Rosanna Greenop ◽  
Paul Webb ◽  
...  

<p>Amorphous calcium carbonate (ACC) has been observed, or inferred to exist, in the majority of the major phyla of marine calcifying organisms. The CaCO<sub>3</sub> produced by these organisms represents one of the largest long-term carbon sinks on Earth’s surface, such that identifying how calcification will respond to anthropogenic climate change is an urgent priority. A substantial portion of our knowledge of the biomineralisation process of these organisms is derived from inferences based on skeletal geochemical data, yet such models typically do not include an ACC component because little is known about trace element and isotope fractionation into ACC. In order to address this, we present, to our knowledge, the first structural and geochemical data of ACC precipitated from seawater under varying carbonate system conditions, seawater Mg/Ca ratios, and in the presence of three of the most common intracrystalline amino acids (aspartic acid, glutamic acid, and glycine). Based on these data we identify the carbonate system conditions necessary to produce ACC from seawater [Evans <em>et al</em>., 2019], and identify the dominant controls on ACC geochemistry. As an example, we utilise these data to build a simple biomineralisation model for the low-Mg (e.g. planktonic) foraminifera, based on precipitation of low-Mg calcite through an ACC precursor phase in a semi-enclosed pool. This exercise demonstrates that the observed shell geochemistry of this group of organisms can be fully reconciled with a model that includes an ACC component, and moreover that constraints can be placed on the degree of ACC utilisation and the ACC-calcite transformation process. More broadly, the exercise demonstrates that knowledge of the characteristics and geochemistry of ACC is important in the development of a process-based understanding of marine calcification.</p><p>Evans, D., Webb, P., Penkman, K. Kröger, R., & Allison, N. [2019] The Characteristics and Biological Relevance of Inorganic Amorphous Calcium Carbonate (ACC) Precipitated from Seawater. <em>Crystal Growth & Design</em> <strong>19</strong>: 4300.</p>


2002 ◽  
Vol 293 (5) ◽  
pp. 478-491 ◽  
Author(s):  
Ingrid Maria Weiss ◽  
Noreen Tuross ◽  
Lia Addadi ◽  
Steve Weiner

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michika Sawada ◽  
Kandi Sridhar ◽  
Yasuharu Kanda ◽  
Shinya Yamanaka

AbstractWe report a synthesis strategy for pure hydroxyapatite (HAp) using an amorphous calcium carbonate (ACC) colloid as the starting source. Room-temperature phosphorylation and subsequent calcination produce pure HAp via intermediate amorphous calcium phosphate (ACP). The pre-calcined sample undergoes a competitive transformation from ACC to ACP and crystalline calcium carbonate. The water content, ACC concentration, Ca/P molar ratio, and pH during the phosphorylation reaction play crucial roles in the final phase of the crystalline phosphate compound. Pure HAp is formed after ACP is transformed from ACC at a low concentration (1 wt%) of ACC colloid (1.71 < Ca/P < 1.88), whereas Ca/P = 1.51 leads to pure β-tricalcium phosphate. The ACP phases are precursors for calcium phosphate compounds and may determine the final crystalline phase.


2020 ◽  
Vol 22 (4) ◽  
pp. 1900922 ◽  
Author(s):  
Christoph Lauer ◽  
Sebastian Haußmann ◽  
Patrick Schmidt ◽  
Carolin Fischer ◽  
Doreen Rapp ◽  
...  

2008 ◽  
Vol 105 (45) ◽  
pp. 17362-17366 ◽  
Author(s):  
Y. Politi ◽  
R. A. Metzler ◽  
M. Abrecht ◽  
B. Gilbert ◽  
F. H. Wilt ◽  
...  

1997 ◽  
Vol 264 (1380) ◽  
pp. 461-465 ◽  
Author(s):  
Elia Beniash ◽  
Joanna Aizenberg ◽  
Lia Addadi ◽  
Stephen Weiner

2008 ◽  
Vol 72 (1) ◽  
pp. 227-231 ◽  
Author(s):  
M. J. I. Briones ◽  
E. López ◽  
J. Méndez ◽  
J. B. Rodríguez ◽  
L. Gago-Duport

AbstractThe earthworm calciferous gland produces a concentrated suspension of calcium carbonate and in certain species precipitates as concretions of CaCO3, which then enter the soil. Here we investigated the initial stages of CaCO3 formation in the earthworm Lumbricus friendi by means of Fourier transform infrared and electron microscopy techniques (field-emission scanning electron microscopy, transmission electron microscopy, high resolution electron microscopy and selected area electron diffraction). In addition, comparisons between the IR spectra of the water-dissolved carbonic anhydrase (CA) and the glandular secretion (‘milky fluid’) were performed in order to investigate the mechanisms involved in CaCO3 precipitation. Our results strongly suggest that carbonation starts with the dissolved CO2, which is transformed via deprotonation to HCO3-, then to CO32- and finally to amorphous calcium carbonate (ACC). While ACC stabilization takes place under the biological control, further transformation stages leading to calcite concretions seem to be inorganically driven by an Ostwald ripening process.


Sign in / Sign up

Export Citation Format

Share Document