Leukemia inhibitory factor promotes extracellular matrix synthesis in degenerative nucleus pulposus cells via MAPK-ERK1/2 signaling pathway

2018 ◽  
Vol 507 (1-4) ◽  
pp. 253-259 ◽  
Author(s):  
Hao Zhou ◽  
Jieliang Shen ◽  
Zhenming Hu ◽  
Xiaoming Zhong
2021 ◽  
Vol 12 ◽  
Author(s):  
Liang Tan ◽  
Yifang Xie ◽  
Ye Yuan ◽  
Kai Hu

The role of lncRNA growth arrest specific 5 (GAS5) in degenerative nucleus pulposus cell (NPC) apoptosis has been reported, but the mechanism of GAS5 in extracellular matrix (ECM) synthesis in intervertebral disc degeneration (IDD) remains unknown. We aimed to investigate the mechanism of GAS5 in ECM synthesis in degenerative NPCs. GAS5 expression was measured in degenerative NPCs (CP-H170) and normal NPCs (CP-H097). siRNA-mediated GAS5 knockdown was transfected to NPCs to detect cell viability and the expression of ECM-related genes (Collagen II, aggrecan, Collagen I, and MMP-3). Subcellular localization of GAS5 was analyzed. The downstream gene and pathway of GAS5 in degenerative NPCs were explored. As our results indicated, lncRNA GAS5 was upregulated in degenerative NPCs. Silencing GAS5 improved the viability of degenerative NPCs and increased ECM synthesis. GAS5 was mainly located in the cytoplasm of NPCs. LncRNA GAS5 sponged miR-26a-5p to regulate PTEN. Overexpression of miR-26a-5p promoted ECM synthesis in degenerative NPCs. Akt inhibitor LY294002 reversed the promotion of silencing GAS5 on ECM synthesis of degenerative NPCs. In conclusion, lncRNA GAS5 sponged miR-26a-5p to upregulate PTEN and inhibit the PI3K/Akt pathway, thus inhibiting ECM synthesis of degenerative NPCs.


2018 ◽  
Vol 50 (4) ◽  
pp. 1510-1521 ◽  
Author(s):  
Gongming Gao ◽  
Haibo Li ◽  
Yongjing Huang ◽  
Jianjian Yin ◽  
Yuqing Jiang ◽  
...  

Background/Aims: Periodic mechanical stress has been shown to promote extracellular matrix (ECM) synthesis and cell migration of nucleus pulposus (NP) cells, however, the mechanisms need to be fully elucidated. The present study aimed to investigate the signal transduction pathway in the regulation of NP cells under periodic mechanical stress. Methods: Primary rat NP cells were isolated and seeded on glass slides, and then treated in our self-developed periodic stress field culture system. To further explore the mechanisms, data were analyzed by scratch-healing assay, quantitative reverse transcription polymerase chain reaction (RT-qPCR) analysis, western blotting, and co-immunoprecipitation assay. Results: Under periodic mechanical stress, the mRNA expression of ECM collagen 2A1 (Col2A1) and aggrecan, and migration of NP cells were significantly increased (P < 0.05 for each), associating with increases in the phosphorylation of Src, GIT1, and ERK1/2 (P < 0.05 for each). Pretreatment with the Src inhibitor PP2 reduced periodic mechanical stress-induced ECM synthesis and cell migration of NP cells (P < 0.05 for each), while the phosphorylation of GIT1 and ERK1/2 were inhibited. ECM synthesis, cell migration, and phosphorylation of ERK1/2 were inhibited after pretreatment with the small interfering RNA for GIT1 in NP cells under periodic mechanical stress (P < 0.05 for each), whereas the phosphorylation of Src was not affected. Pretreatment with the ERK1/2 inhibitor PD98059 reduced periodic mechanical stress-induced ECM synthesis and cell migration of NP cells (P < 0.05 for each). Co-immunoprecipitation assay showed that there was a direct interaction between Src and GIT1 and between GIT1 and ERK1/2. Conclusion: In conclusion, periodic mechanical stress induced ECM expression and migration of NP cells via Src-GIT1-ERK1/2 signaling pathway, playing an important role in regulation of NP cells.


2021 ◽  
Author(s):  
Chenglong Xie ◽  
Haiwei Ma ◽  
Yifeng Shi ◽  
Junli Li ◽  
Hongqiang Wu ◽  
...  

IL-1β promotes inflammatory response and extracellular matrix (ECM) degradation through NF-κB signaling pathway; while cardamonin attenuates the inflammatory response and ECM degradation by suppressing NF-κB signaling pathway via Nrf2/HO-1 axis.


2019 ◽  
Vol 38 (4) ◽  
pp. 358-366
Author(s):  
Xiang Zhang ◽  
Bo Qiao ◽  
Zhenming Hu ◽  
Weidong Ni ◽  
Shuquan Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document