The PDE5 inhibitor udenafil ameliorates nonalcoholic fatty liver disease by improving mitochondrial function

2021 ◽  
Vol 558 ◽  
pp. 57-63
Author(s):  
Hea Min Yu ◽  
Hyo Kyun Chung ◽  
Kang Seo Park
2018 ◽  
Vol 59 (6) ◽  
pp. 967-973 ◽  
Author(s):  
Fatiha Nassir ◽  
Justin J. Arndt ◽  
Sarah A. Johnson ◽  
Jamal A. Ibdah

Mitochondrial trifunctional protein (MTP) plays a critical role in the oxidation of long-chain fatty acids. We previously reported that aging mice (>9 months old) heterozygous for an MTP defect (MTP+/−) develop nonalcoholic fatty liver disease (NAFLD). We tested whether a high-fat diet (HFD) accelerates NAFLD in young MTP+/−mice, and whether overexpression of the nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase sirtuin 3 (SIRT3) deacetylates MTP and improves mitochondrial function and NAFLD. Three-month-old WT and MTP+/− mice were fed HFD (60% cal fat) for 16 weeks and livers were assessed for fatty acid oxidation (FAO) and NAFLD. Compared with WT, MTP+/− mice displayed reduced hepatic SIRT3 levels and reduced FAO, with increased hepatic steatosis and the inflammatory marker CD68. Hepatic overexpression of SIRT3 in HFD-fed MTP+/− mice increased hepatic MTP protein levels at the posttranscriptional level. Immunoprecipitation of MTP from liver mitochondria followed by Western blot with acetyl-lysine antibody showed higher acetylation of MTP in MTP+/− compared with WT mice. Overexpression of SIRT3 in MTP+/− mice significantly reduced the acetylation of MTP compared with β-galactosidase controls, increased mitochondrial FAO, and reduced hepatic steatosis, CD68, and serum ALT levels. Taken together, our data indicate that deacetylation of MTP by SIRT3 improves mitochondrial function and rescues NAFLD in MTP+/− mice.


2021 ◽  
Vol 12 ◽  
Author(s):  
Weijian Hang ◽  
Hongyang Shu ◽  
Zheng Wen ◽  
Jinyan Liu ◽  
Zhiyuan Jin ◽  
...  

Rationale: Nonalcoholic fatty liver disease (NAFLD) is a kind of metabolic disease characterized by liver steatosis. Excessive reactive oxygen species (ROS) originating from dysfunctional mitochondria is the major pathophysiological contributor in the development of NAFLD and is thought to be a promising therapeutic target. A few reports demonstrate the antioxidative treatments for NAFLD.Methods: Male C57 mice were fed on a normal chow diet (ND) or high-fat diet (HFD) for 8 weeks. PBS or N-acetyl cysteine (NAC) was gavaged to mice. LO2 human liver cell line treated with palmitic acid (PA) was applied as a cellular model. Western blot, immunofluorescence, biochemistry assay, and pathological staining were used to investigate the mechanism of suppressing lipid accumulation of NAC.Results: NAC treatment was able to prevent HFD-induced NAFLD, as evidenced by less hepatic triglyceride accumulation and lipid droplet formation compared with that of mice in the HFD group. NAC could preserve mitochondrial function by inhibiting excessive mitophagy and promoting mitochondria biogenesis to prevent ROS production. NAC also activated Sirt1 and preserved its protein level and subsequently promoted mitochondria biogenesis via deacetylating PGC1a.Conclusion: We demonstrated that NAC may be an effective drug to treat NAFLD, which was related to its antioxidative and mitochondrial protective effect.


Sign in / Sign up

Export Citation Format

Share Document