Disulfide reductase activity of thioredoxin-h2 imparts cold tolerance in Arabidopsis

2021 ◽  
Vol 568 ◽  
pp. 124-130
Author(s):  
Joung Hun Park ◽  
Eun Seon Lee ◽  
Ho Byoung Chae ◽  
Seol Ki Paeng ◽  
Seong Dong Wi ◽  
...  
2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Alberto Guevara-Flores ◽  
Irene P. del Arenal ◽  
Guillermo Mendoza-Hernández ◽  
Juan Pablo Pardo ◽  
Oscar Flores-Herrera ◽  
...  

Mitochondrial thioredoxin-glutathione reductase was purified from larvalTaenia crassiceps(cysticerci). The preparation showed NADPH-dependent reductase activity with either thioredoxin or GSSG, and was able to perform thiol/disulfide exchange reactions. At25∘Cspecific activities were437  ±  27mU mg-1and840  ±  49mU mg-1with thioredoxin and GSSG, respectively. ApparentKmvalues were0.87  ±  0.04 μM,41  ±  6 μM and19  ±  10 μM for thioredoxin, GSSG and NADPH, respectively. Thioredoxin from eukaryotic sources was accepted as substrate. The enzyme reduced H2O2in a NADPH-dependent manner, although with low catalytic efficiency. In the presence of thioredoxin, mitochondrial TGR showed a thioredoxin peroxidase-like activity. All disulfide reductase activities were inhibited by auranofin, suggesting mTGR is dependent on selenocysteine. The reductase activity with GSSG showed a higher dependence on temperature as compared with the DTNB reductase activity. The variation of the GSSG- and DTNB reductase activities on pH was dependent on the disulfide substrate. Like the cytosolic isoform, mTGR showed a hysteretic kinetic behavior at moderate or high GSSG concentrations, but it was less sensitive to calcium. The enzyme was able to protect glutamine synthetase from oxidative inactivation, suggesting that mTGR is competent to contend with oxidative stress.


2007 ◽  
Vol 189 (20) ◽  
pp. 7475-7484 ◽  
Author(s):  
Daniel J. Lessner ◽  
James G. Ferry

ABSTRACT Methanosarcina acetivorans, a strictly anaerobic methane-producing species belonging to the domain Archaea, contains a gene cluster annotated with homologs encoding oxidative stress proteins. One of the genes (MA3736) is annotated as a gene encoding an uncharacterized carboxymuconolactone decarboxylase, an enzyme required for aerobic growth with aromatic compounds by species in the domain Bacteria. Methane-producing species are not known to utilize aromatic compounds, suggesting that MA3736 is incorrectly annotated. The product of MA3736, overproduced in Escherichia coli, had protein disulfide reductase activity dependent on a C67XXC70 motif not found in carboxymuconolactone decarboxylase. We propose that MA3736 be renamed mdrA (methanosarcina disulfide reductase). Further, unlike carboxymuconolactone decarboxylase, MdrA contained an Fe-S cluster. Binding of the Fe-S cluster was dependent on essential cysteines C67 and C70, while cysteines C39 and C107 were not required. Loss of the Fe-S cluster resulted in conversion of MdrA from an inactive hexamer to a trimer with protein disulfide reductase activity. The data suggest that MdrA is the prototype of a previously unrecognized protein disulfide reductase family which contains an intermolecular Fe-S cluster that controls oligomerization as a mechanism to regulate protein disulfide reductase activity.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Subrata Pal

Thermoanaerobacter indiensisBSB-33 has been earlier shown to reduce Fe(III) and Cr(VI) anaerobically at 60°C optimally. Further, the Gram-positive thermophilic bacterium contains Cr(VI) reduction activity in both the membrane and cytoplasm. The soluble fraction prepared fromT. indiensiscells grown at 60°C was found to contain the majority of Fe(III) reduction activity of the microorganism and produced four distinct bands in nondenaturing Fe(III) reductase activity gel. Proteins from each of these bands were partially purified by chromatography and identified by mass spectrometry (MS) with the help ofT. indiensisproteome sequences. Two paralogous dihydrolipoamide dehydrogenases (LPDs), thioredoxin reductase (Trx), NADP(H)-nitrite reductase (Ntr), and thioredoxin disulfide reductase (Tdr) were determined to be responsible for Fe(III) reductase activity. Amino acid sequence and three-dimensional (3D) structural similarity analyses of theT. indiensisFe(III) reductases were carried out with Cr(VI) reducing proteins from other bacteria. The two LPDs and Tdr showed very significant sequence and structural identity, respectively, with Cr(VI) reducing dihydrolipoamide dehydrogenase fromThermus scotoductusand thioredoxin disulfide reductase fromDesulfovibrio desulfuricans. It appears that in addition to their iron reducing activityT. indiensisLPDs and Tdr are possibly involved in Cr(VI) reduction as well.


2014 ◽  
Vol 20 (9) ◽  
pp. 1396-1406 ◽  
Author(s):  
Laura Botello-Morte ◽  
M. Teresa Bes ◽  
Begoña Heras ◽  
Ángela Fernández-Otal ◽  
M. Luisa Peleato ◽  
...  

Biochemistry ◽  
2015 ◽  
Vol 55 (2) ◽  
pp. 313-321 ◽  
Author(s):  
Deepa Yenugudhati ◽  
Divya Prakash ◽  
Adepu K. Kumar ◽  
R. Siva Sai Kumar ◽  
Neela H. Yennawar ◽  
...  

Author(s):  
Diogo de Abreu Meireles ◽  
César Henrique Yokomizo ◽  
Luís Eduardo Soares Netto

AbstractYbbN/CnoX are proteins that display a Trx domain linked to a tetratricopeptide (TPR) domain, which are involved in protein-protein interactions and protein folding processes. YbbN from Escherichia coli (EcYbbN) displays a co-chaperone (holdase) activity that is induced by HOCl (bleach). EcYbbN contains a SQHC motif within the Trx domain and displays no thiol-disulfide oxidoreductase activity. EcYbbN also presents a second Cys residue at Trx domain (Cys63) 24 residues away from SQHF motif that can form mixed disulfides with substrates. Here, we compared EcYbbN with two other YbbN proteins: from Xylella fastidiosa (XfYbbN) and from Pseudomonas aeruginosa (PaYbbN). While EcYbbN displays two Cys residues along a SQHC[N24]C motif; XfYbbN and PaYbbN present two and three Cys residues in the CAPC[N24]V and CAPC[N24]C motifs, respectively. These three proteins are representatives of evolutionary conserved YbbN subfamilies. In contrast to EcYbbN, both XfYbbN and PaYbbN: (1) reduced an artificial disulfide (5,5′-dithiobis-(2-nitrobenzoic acid) = DTNB); and (2) supported the peroxidase activity of Peroxiredoxin Q from X. fastidiosa, suggesting that in vivo these proteins might function similarly to the canonical Trx enzymes. Indeed, XfYbbN was reduced by XfTrx reductase with a high catalytic efficiency (kcat/Km=1.27 × 107 M−1.s−1), like the canonical XfTrx (XfTsnC). Furthermore, EcYbbN (as described before) and XfYbbN, but not PaYbbN displayed HOCl-induced holdase activity. Remarkably, EcYbbN gained disulfide reductase activity while lost the HOCl-activated chaperone function when the SQHC was replaced by CQHC. In contrast, the XfYbbN C40A mutant lost the disulfide reductase activity, while kept its HOCl-induced chaperone function. Finally, we generated a P. aeruginosa strain with the ybbN gene deleted, which did not present increased sensitivity to heat shock or to oxidants or to reductants. Altogether, our results suggest that different YbbN/CnoX proteins display distinct properties and activities, depending on the presence of the three conserved Cys residues.Graphical AbstractHighlights- CXXC motif is required for the thiol-disulfide reductase activity of YbbN proteins.- XfYbbN and PaYbbN display thiol-disulfide oxidoreductase activity- The affinities of XfTrxR for XfYbbN and XfTsnC (canonical Trx) are comparable- XfYbbN and EcYbbN, but not PaYbbN, display holdase activity induced by hypochlorous acid- Engineering EcYbbN/CnoX by inserting a Cys residue in the SQHC motif resulted in a gain of function (thiol-disulfide oxidoreductase activity) and abolished the HOCl-induced holdase activity.


Sign in / Sign up

Export Citation Format

Share Document