Structural and Biochemical Characterizations of Methanoredoxin fromMethanosarcina acetivorans, a Glutaredoxin-Like Enzyme with Coenzyme M-Dependent Protein Disulfide Reductase Activity

Biochemistry ◽  
2015 ◽  
Vol 55 (2) ◽  
pp. 313-321 ◽  
Author(s):  
Deepa Yenugudhati ◽  
Divya Prakash ◽  
Adepu K. Kumar ◽  
R. Siva Sai Kumar ◽  
Neela H. Yennawar ◽  
...  
2007 ◽  
Vol 189 (20) ◽  
pp. 7475-7484 ◽  
Author(s):  
Daniel J. Lessner ◽  
James G. Ferry

ABSTRACT Methanosarcina acetivorans, a strictly anaerobic methane-producing species belonging to the domain Archaea, contains a gene cluster annotated with homologs encoding oxidative stress proteins. One of the genes (MA3736) is annotated as a gene encoding an uncharacterized carboxymuconolactone decarboxylase, an enzyme required for aerobic growth with aromatic compounds by species in the domain Bacteria. Methane-producing species are not known to utilize aromatic compounds, suggesting that MA3736 is incorrectly annotated. The product of MA3736, overproduced in Escherichia coli, had protein disulfide reductase activity dependent on a C67XXC70 motif not found in carboxymuconolactone decarboxylase. We propose that MA3736 be renamed mdrA (methanosarcina disulfide reductase). Further, unlike carboxymuconolactone decarboxylase, MdrA contained an Fe-S cluster. Binding of the Fe-S cluster was dependent on essential cysteines C67 and C70, while cysteines C39 and C107 were not required. Loss of the Fe-S cluster resulted in conversion of MdrA from an inactive hexamer to a trimer with protein disulfide reductase activity. The data suggest that MdrA is the prototype of a previously unrecognized protein disulfide reductase family which contains an intermolecular Fe-S cluster that controls oligomerization as a mechanism to regulate protein disulfide reductase activity.


1991 ◽  
Vol 273 (2) ◽  
pp. 485-488 ◽  
Author(s):  
V A Zammit ◽  
A M Caldwell

The roles of protein kinase C, Ca2+/calmodulin-dependent protein kinase and AMP-activated protein kinase in the phosphorylation of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase induced by Ca2(+)-mobilizing conditions in isolated hepatocytes were investigated. Only partial evidence for the involvement of AMP-activated kinase was found. Antagonism of calmodulin action prolonged the decrease in expressed/total activity ratio induced by vasopressin plus glucagon. Protease inhibitors active against Ca2(+)-dependent cytosolic proteases or lysosomal proteolysis did not attenuate the loss of total HMG-CoA reductase induced by glucagon plus vasopressin, but calmodulin antagonists largely prevented this effect.


2011 ◽  
Vol 41 (4) ◽  
pp. 432-444 ◽  
Author(s):  
Masatoshi Hagiwara ◽  
Ken-ichi Maegawa ◽  
Mamoru Suzuki ◽  
Ryo Ushioda ◽  
Kazutaka Araki ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Alberto Guevara-Flores ◽  
Irene P. del Arenal ◽  
Guillermo Mendoza-Hernández ◽  
Juan Pablo Pardo ◽  
Oscar Flores-Herrera ◽  
...  

Mitochondrial thioredoxin-glutathione reductase was purified from larvalTaenia crassiceps(cysticerci). The preparation showed NADPH-dependent reductase activity with either thioredoxin or GSSG, and was able to perform thiol/disulfide exchange reactions. At25∘Cspecific activities were437  ±  27mU mg-1and840  ±  49mU mg-1with thioredoxin and GSSG, respectively. ApparentKmvalues were0.87  ±  0.04 μM,41  ±  6 μM and19  ±  10 μM for thioredoxin, GSSG and NADPH, respectively. Thioredoxin from eukaryotic sources was accepted as substrate. The enzyme reduced H2O2in a NADPH-dependent manner, although with low catalytic efficiency. In the presence of thioredoxin, mitochondrial TGR showed a thioredoxin peroxidase-like activity. All disulfide reductase activities were inhibited by auranofin, suggesting mTGR is dependent on selenocysteine. The reductase activity with GSSG showed a higher dependence on temperature as compared with the DTNB reductase activity. The variation of the GSSG- and DTNB reductase activities on pH was dependent on the disulfide substrate. Like the cytosolic isoform, mTGR showed a hysteretic kinetic behavior at moderate or high GSSG concentrations, but it was less sensitive to calcium. The enzyme was able to protect glutamine synthetase from oxidative inactivation, suggesting that mTGR is competent to contend with oxidative stress.


1998 ◽  
Vol 17 (5) ◽  
pp. 272-277 ◽  
Author(s):  
D J Morré

A number of solvents including ethyl, amyl, butyl, octyl and benzyl alcohols, ethylene glycol, ethyl acetate, acetone, diethyl ether, propylene oxide, r-dioxane, benzene, xylene, chloroform and carbon tetrachloride stimulate the growth of plants or plant parts at low concentrations and inhibit at high concentrations. These same solvents, at low dilutions, stimulate the activity of a growth-related protein disulfide-thiol interchange protein (TIP) with NADH: protein disulfide reductase (NADH oxidase) (NOX) activity with plasma membrane vesicles isolated from elongating regions cut from dark grown seedlings of soybeans. Based on these and other findings, we suggest the TIP/NOX protein to be the molecular target of the biological effects of low levels of exposure (hormesis) involved in the stimulation of plant growth.


Sign in / Sign up

Export Citation Format

Share Document