scholarly journals Effect of genetic background on the cardiac phenotype in a mouse model of Emery-Dreifuss muscular dystrophy

2019 ◽  
Vol 19 ◽  
pp. 100664 ◽  
Author(s):  
Nicolas Vignier ◽  
Nathalie Mougenot ◽  
Gisèle Bonne ◽  
Antoine Muchir
Author(s):  
H. D. Geissinge ◽  
L.D. Rhodes

A recently discovered mouse model (‘mdx’) for muscular dystrophy in man may be of considerable interest, since the disease in ‘mdx’ mice is inherited by the same mode of inheritance (X-linked) as the human Duchenne (DMD) muscular dystrophy. Unlike DMD, which results in a situation in which the continual muscle destruction cannot keep up with abortive regenerative attempts of the musculature, and the sufferers of the disease die early, the disease in ‘mdx’ mice appears to be transient, and the mice do not die as a result of it. In fact, it has been reported that the severely damaged Tibialis anterior (TA) muscles of ‘mdx’ mice seem to display exceptionally good regenerative powers at 4-6 weeks, so much so, that these muscles are able to regenerate spontaneously up to their previous levels of physiological activity.


Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 349
Author(s):  
Sholeh Bazrafshan ◽  
Hani Kushlaf ◽  
Mashhood Kakroo ◽  
John Quinlan ◽  
Richard C. Becker ◽  
...  

Novel genetic variants exist in patients with hereditary neuromuscular disorders (NMD), including muscular dystrophy. These patients also develop cardiac manifestations. However, the association between these gene variants and cardiac abnormalities is understudied. To determine genetic modifiers and features of cardiac disease in NMD patients, we have reviewed electronic medical records of 651 patients referred to the Muscular Dystrophy Association Care Center at the University of Cincinnati and characterized the clinical phenotype of 14 patients correlating with their next-generation sequencing data. The data were retrieved from the electronic medical records of the 14 patients included in the current study and comprised neurologic and cardiac phenotype and genetic reports which included comparative genomic hybridization array and NGS. Novel associations were uncovered in the following eight patients diagnosed with Limb-girdle Muscular Dystrophy, Bethlem Myopathy, Necrotizing Myopathy, Charcot-Marie-Tooth Disease, Peripheral Polyneuropathy, and Valosin-containing Protein-related Myopathy. Mutations in COL6A1, COL6A3, SGCA, SYNE1, FKTN, PLEKHG5, ANO5, and SMCHD1 genes were the most common, and the associated cardiac features included bundle branch blocks, ventricular chamber dilation, septal thickening, and increased outflow track gradients. Our observations suggest that features of cardiac disease and modifying gene mutations in patients with NMD require further investigation to better characterize genotype–phenotype relationships.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Menglong Chen ◽  
Hui Shi ◽  
Shixue Gou ◽  
Xiaomin Wang ◽  
Lei Li ◽  
...  

Abstract Background Mutations in the DMD gene encoding dystrophin—a critical structural element in muscle cells—cause Duchenne muscular dystrophy (DMD), which is the most common fatal genetic disease. Clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing is a promising strategy for permanently curing DMD. Methods In this study, we developed a novel strategy for reframing DMD mutations via CRISPR-mediated large-scale excision of exons 46–54. We compared this approach with other DMD rescue strategies by using DMD patient-derived primary muscle-derived stem cells (DMD-MDSCs). Furthermore, a patient-derived xenograft (PDX) DMD mouse model was established by transplanting DMD-MDSCs into immunodeficient mice. CRISPR gene editing components were intramuscularly delivered into the mouse model by adeno-associated virus vectors. Results Results demonstrated that the large-scale excision of mutant DMD exons showed high efficiency in restoring dystrophin protein expression. We also confirmed that CRISPR from Prevotella and Francisella 1(Cas12a)-mediated genome editing could correct DMD mutation with the same efficiency as CRISPR-associated protein 9 (Cas9). In addition, more than 10% human DMD muscle fibers expressed dystrophin in the PDX DMD mouse model after treated by the large-scale excision strategies. The restored dystrophin in vivo was functional as demonstrated by the expression of the dystrophin glycoprotein complex member β-dystroglycan. Conclusions We demonstrated that the clinically relevant CRISPR/Cas9 could restore dystrophin in human muscle cells in vivo in the PDX DMD mouse model. This study demonstrated an approach for the application of gene therapy to other genetic diseases.


2012 ◽  
Vol 20 (7) ◽  
pp. 1378-1383 ◽  
Author(s):  
Dawn A Delfín ◽  
Ying Xu ◽  
Kevin E Schill ◽  
Tessily A Mays ◽  
Benjamin D Canan ◽  
...  

PLoS ONE ◽  
2010 ◽  
Vol 5 (6) ◽  
pp. e11220 ◽  
Author(s):  
Alfredo D. Guerron ◽  
Rashmi Rawat ◽  
Arpana Sali ◽  
Christopher F. Spurney ◽  
Emidio Pistilli ◽  
...  

2016 ◽  
Vol 86 ◽  
pp. 109-120 ◽  
Author(s):  
Marco Fuenzalida ◽  
Claudia Espinoza ◽  
Miguel Ángel Pérez ◽  
Cheril Tapia-Rojas ◽  
Loreto Cuitino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document