Activation of nuclear factor kappa B by diesel exhaust particles in mouse epidermal cells through phosphatidylinositol 3-kinase/Akt signaling pathway

2004 ◽  
Vol 67 (10) ◽  
pp. 1975-1983 ◽  
Author(s):  
Cuiling Ma ◽  
Jin Wang ◽  
Jia Luo
Author(s):  
Jun Liu ◽  
Mingyu Zhang ◽  
Ying Kan ◽  
Wei Wang ◽  
Jie Liu ◽  
...  

Nuclear factor-κB activating protein (NKAP) is a conserved nuclear protein that acts as an oncogene in various cancers and is associated with a poor prognosis. This study aimed to investigate the role of NKAP in neuroblastoma (NB) progression and recurrence. We compared NKAP gene expression between 89 recurrence and 134 non-recurrence patients with NB by utilizing the ArrayExpress database. The relationship between NKAP expression and clinicopathological features was evaluated by correlation analysis. We knocked down NKAP expression in NB1 and SK-N-SH cells by small interfering RNA transfection to verify its role in tumor proliferation, apoptosis, and the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway. NKAP gene expression in NB tissues was significantly overexpressed in the recurrence group compared with the non-recurrence group, and NKAP was enriched in the PI3K/AKT pathway. Correlation analysis revealed NKAP expression was correlated with chromosome 11q deletion in patients with NB. Knockdown of NKAP expression significantly inhibited the proliferation and promoted the apoptosis of NB1 and SK-N-SH cells. Moreover, we found that small interfering NKAP significantly reduced p-PI3K and p-AKT expression. NKAP knockdown played an oncogenic role in NB by inhibiting PI3K/AKT signaling pathway activations both in vitro and in vivo. Our research revealed that NKAP mediates NB cells by inhibited proliferation and promoted apoptosis through activating the PI3K/AKT signaling pathways, and the expression of NKAP may act as a novel biomarker for predicting recurrence and chromosome 11q deletion in patients with NB.


2005 ◽  
Vol 16 (7) ◽  
pp. 1936-1947 ◽  
Author(s):  
Benedetta Bussolati ◽  
Maria Chiara Deregibus ◽  
Valentina Fonsato ◽  
Sophie Doublier ◽  
Tiziana Spatola ◽  
...  

2020 ◽  
Author(s):  
Lin Zhou ◽  
Cheng Xing Yang ◽  
Lin Chun Fang ◽  
You Yuan Bao ◽  
Zhi Gang Wang ◽  
...  

Abstract Objective:Craniopharyngiomas are rare, histologically benign but clinically challenging neoplasms. Here, we aimed to interrogate the effect and significance of Phosphatidylinositol-3-kinase (PI3K) signaling pathway on papillary craniopharyngioma (PCP) cell growth and survival.Methods: We used Western blotting (WB) experiments to evaluate the expression of the PI3K/protein kinase B (AKT) in Craniopharyngiomas tissues, relative to health tissues. Primary tumor cells were obtained from fresh PCP samples by cell culture and then determined by cell morphology, immunofluorescence staining and expression of specific cell markers. In this study, PCP cell lines, isolated from fresh PCP samples, were treated with different concentrations of LY294002, a PI3K/AKT signaling inhibitor, to evaluate their proliferation, migration and invasion. We determined the cell proliferation using Cell Counting Kit-8 and colony formation. We then used flow cytometry to evaluate cell apoptosis and cell cycle. In addition, cell migration and invasion levels were determined by wound healing and Transwell assays, respectively.Results: Our data demonstrated that the expression of phosphorylated-PI3K/AKT was upregulated in human craniopharyngioma tissues compared to the normal control tissues. Immunofluorescence assays showed the presence of cytokeratin (pan CK) and vimentin protein (VIM) in the PCP primary cells. Furthermore, inhibition of PI3K/AKT signaling blocks the proliferation, migration and invasion of the PCP primary cells.Conclusions:Taken together, our data robustly demonstrates that the PI3K/AKT signaling pathway mediates the proliferation, migration and invasion of the PCP cells.


Sign in / Sign up

Export Citation Format

Share Document