Process performance and microbial interaction in two-stage continuously stirred tank reactors for sludge anaerobic digestion operated at different temperatures

2020 ◽  
Vol 161 ◽  
pp. 107682
Author(s):  
Zifan Wang ◽  
Tianli Ma ◽  
Lizhen Xing
2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Xiao-Shuang Shi ◽  
Jian-Jun Dong ◽  
Jun-Hong Yu ◽  
Hua Yin ◽  
Shu-Min Hu ◽  
...  

Three semicontinuous continuous stirred-tank reactors (CSTR) operating at mesophilic conditions (35°C) were used to investigate the effect of hydraulic retention time (HRT) on anaerobic digestion of wheat straw. The results showed that the average biogas production with HRT of 20, 40, and 60 days was 46.8, 79.9, and 89.1 mL/g total solid as well as 55.2, 94.3, and 105.2 mL/g volatile solids, respectively. The methane content with HRT of 20 days, from 14.2% to 28.5%, was the lowest among the three reactors. The pH values with HRT of 40 and 60 days were in the acceptable range compared to that with HRT of 20 days. The propionate was dominant in the reactor with HRT of 20 days, inhibiting the activities of methanogens and causing the lower methane content in biogas. The degradation of cellulose, hemicellulose, and crystalline cellulose based on XRD was also strongly influenced by HRTs.


2017 ◽  
Vol 235 ◽  
pp. 380-388 ◽  
Author(s):  
YuQian Li ◽  
ChunMei Liu ◽  
Akiber Chufo Wachemo ◽  
HaiRong Yuan ◽  
DeXun Zou ◽  
...  

2021 ◽  
Vol 9 (11) ◽  
pp. 2350
Author(s):  
Aleksandr Bulaev ◽  
Aleksandra Nechaeva ◽  
Yuliya Elkina ◽  
Vitaliy Melamud

Tank bio-oxidation is a biohydrometallurgical technology widely used for metal recovery from sulfide concentrates. Since carbon availability is one of the key factors affecting microbial communities, it may also determine the rate of sulfide concentrate bio-oxidation. The goal of the present work was to evaluate the effect of carbon sources on the bio-oxidation of the concentrate containing 56% pyrite and 14% arsenopyrite at different temperatures (40 and 50 °C) in stirred tank reactors. CO2 was supplied into the pulp of the first reactor (about 0.01 L/min) and 0.02% (w/v) molasses was added to the pulp of the second one, and no additional carbon sources were used in the control tests. At 40 °C, 77% of pyrite and 98% of arsenopyrite were oxidized in the first reactor, in the second one, 73% of pyrite and 98% of arsenopyrite were oxidized, while in the control reactor, 27% pyrite and 93% arsenopyrite were oxidized. At 50 °C, in the first reactor, 94% of pyrite and 99% of arsenopyrite were oxidized, in the second one, 21% of pyrite and 94% of arsenopyrite were oxidized, while in the control reactor, 10% pyrite and 92% arsenopyrite were oxidized. The analysis of the microbial populations in the reactors revealed differences in the total number of microorganisms and their species composition. Thus, it was shown that the use of various carbon sources made it possible to increase the intensity of the concentrate bio-oxidation, since it affected microbial populations performing the process.


Sign in / Sign up

Export Citation Format

Share Document