Nitrogen supplementation for the production of Chlorella vulgaris biomass in secondary effluent from dairy industry

2021 ◽  
Vol 165 ◽  
pp. 107818
Author(s):  
Ana Elisa Rodrigues-Sousa ◽  
Ivan V.O. Nunes ◽  
Alex B. Muniz-Junior ◽  
João Carlos M. Carvalho ◽  
Lauris C. Mejia-da-Silva ◽  
...  
2020 ◽  
Vol 1655 ◽  
pp. 012123
Author(s):  
Titin Handayani ◽  
Adi Mulyanto ◽  
Fajar Eko Priyanto ◽  
Rudi Nugroho

2021 ◽  
Vol 11 (5) ◽  
pp. 2207
Author(s):  
Diana Pacheco ◽  
A. Cristina S. Rocha ◽  
Analie Garcia ◽  
Ana Bóia ◽  
Leonel Pereira ◽  
...  

The need to reduce the costs associated with microalgae cultivation encouraged scientific research into coupling this process with wastewater treatment. Thus, the aim of this work was to assess the growth of Chlorella vulgaris (Chlorophyta) in different effluents from a municipal wastewater treatment plant (WWTP), namely secondary effluent (SE) and sludge run-off (SR). Assays were performed, under the same conditions, in triplicate with 4 dilution ratios of the wastewaters (25%, 50%, 75% and 100%) with the standard culture medium bold basal medium double nitrated (BBM2N) as a control. The capability of C. vulgaris for biomass production, chlorophyll synthesis and nutrients removal in the SE and SR was evaluated. The 25% SE and 25% SR showed increased specific growth rates (0.47 and 0.55 day−1, respectively) and higher biomass yields (8.64 × 107 and 1.95 × 107 cells/mL, respectively). Regarding the chlorophyll content, the 100% SR promoted the highest concentration of this pigment (2378 µg/L). This green microalga was also able to remove 94.8% of total phosphorus of SE, while in 50% SR, 31.2% was removed. Removal of 73.9% and 65.9% of total nitrogen in 50% and 100% SR, respectively, was also observed. C. vulgaris growth can, therefore, be maximized with the addition of municipal effluents, to optimize biomass production, while cleansing the effluents.


2021 ◽  
Vol 56 (2) ◽  
pp. 365-373
Author(s):  
Ivan Venâncio de Oliveira Nunes ◽  
Carina Harue Bastos Inoue ◽  
Ana Elisa Rodrigues Sousa ◽  
João Carlos Monteiro de Carvalho ◽  
Andreia Maria da Anunciação Gomes ◽  
...  

Secondary wastewaters from the dairy industry may cause eutrophication of water bodies when not properly treated, mainly because they contain nutrients such as phosphorus and nitrogen. Tertiary treatment using microalgae could be an adequate solution for Minas Gerais State, the largest Brazilian milk producer, contributing to the reduction of environmental impacts, as well as providing biomass for oil extraction, and obtaining active compounds and inputs (including proteins) for animal feeding. In this work, dilutions (with distilled water) of the secondary wastewater from the dairy industry were evaluated to cultivate Chlorella vulgaris in a bench-scale tubular photobioreactor. The results indicate the feasibility of using wastewater from the dairy industry, after secondary treatment, to cultivate microalgae, showing cell growth like that obtained in control cultures (Bold basal medium). The secondary wastewater without dilution (100% wastewater) provided the best condition for biomass production. The biomass obtained in wastewater showed no differences from the biomass obtained in the Bold basal medium (control) in terms of protein, lipid content, or fatty acid profile.


BIOCELL ◽  
2018 ◽  
Vol 42 (1) ◽  
pp. 7-11 ◽  
Author(s):  
M. Moustafa ◽  
T. Taha ◽  
M. Elnouby ◽  
M.A. Abu-Saied Aied ◽  
A. Shati ◽  
...  

Author(s):  
J.G. Jago ◽  
M.W. Woolford

There is a growing shortage of labour within the dairy industry. To address this the industry needs to attract more people and/or reduce the labour requirements on dairy farms. Current milk harvesting techniques contribute to both the labour requirements and the current labour shortage within the industry as the process is labour-intensive and necessitates long and unsociable working hours. Automated milking systems (AMS) have been in operation, albeit on a small scale, on commercial farms in Europe for a decade and may have the potential to address labour issues within the New Zealand dairy industry. A research programme has been established (The Greenfield Project) which aims to determine the feasibility of automated milking under New Zealand dairying conditions. A Fullwoods MERLIN AMS has been installed on a protoype farmlet and is successfully milking a small herd of 41 cows. Progress from the prototype Greenfields system offers considerable potential for implementing AMS in extensive grazing systems. Keywords: automated milking systems, dairy cattle, grazing, labour


Sign in / Sign up

Export Citation Format

Share Document