Feasible design for electricity generation from Chlorella vulgaris using convenient photosynthetic conditions

BIOCELL ◽  
2018 ◽  
Vol 42 (1) ◽  
pp. 7-11 ◽  
Author(s):  
M. Moustafa ◽  
T. Taha ◽  
M. Elnouby ◽  
M.A. Abu-Saied Aied ◽  
A. Shati ◽  
...  
2013 ◽  
Vol 171 (8) ◽  
pp. 2082-2092 ◽  
Author(s):  
Xia-yuan Wu ◽  
Tian-shun Song ◽  
Xu-jun Zhu ◽  
Ping Wei ◽  
Charles C. Zhou

The demand for natural resources is rising tremendously as a result of the current urban expansion. Water and energy are the two main focuses of the environmental scientific society due to their anticipated scarcity. A desalination approach using algae ponds along with an electricity generation technique are provided in the present study. This is achieved through the use of Chlorella vulgaris, a fresh water algae residing in ponds, and large scale chamber-less bio- photo voltaic cell (BPV). Chlorella vulgaris was found to generate an electric current from the pond whilst causing concurrent desalination. This study proves the possibility of simultaneous power generation and salt removal using Chlorella vulgaris and opens doors for massive research potential in the fields of renewable energy and desalination.


Author(s):  
Harshkumar Patel ◽  
Yogesh Patel

Now-a-days energy planners are aiming to increase the use of renewable energy sources and nuclear to meet the electricity generation. But till now coal-based power plants are the major source of electricity generation. Disadvantages of coal-based thermal power plants is disposal problem of fly ash and pond ash. It was earlier considered as a total waste and environmental hazard thus its use was limited, but now its useful properties have been known as raw material for various application in construction field. Fly ash from the thermal plants is available in large quantities in fine and coarse form. Fine fly ash is used in construction industry in some amount and coarse fly ash is subsequently disposed over land in slurry forms. In India around 180 MT fly is produced and only around 45% of that is being utilized in different sectors. Balance fly ash is being disposed over land. It needs one acre of land for ash disposal to produce 1MW electricity from coal. Fly ash and pond ash utilization helps to reduce the consumption of natural resources. The fly ash became available in coal based thermal power station in the year 1930 in USA. For its gainful utilization, scientist started research activities and in the year 1937, R.E. Davis and his associates at university of California published research details on use of fly ash in cement concrete. This research had laid foundation for its specification, testing & usages. This study reports the potential use of pond-ash and fly-ash as cement in concrete mixes. In this present study of concrete produced using fly ash, pond ash and OPC 53 grade will be carried. An attempt will be made to investigate characteristics of OPC concrete with combined fly ash and pond ash mixed concrete for Compressive Strength test, Split Tensile Strength test, Flexural Strength test and Durability tests. This paper deals with the review of literature for fly-ash and pond-ash as partial replacement of cement in concrete.


2018 ◽  
Vol 13 (Number 1) ◽  
pp. 55-67
Author(s):  
Shafini M. Shafie ◽  
Zakirah Othman ◽  
N Hami

Malaysia has an abundance of biomass resources that can be utilised for power generation. One of them is paddy residue. Paddy residue creates ahuge potential in the power generation sector. The consumption of paddy residue can help Malaysia become less dependent on conventional sources of energy, mitigate greenhouse gas(GHG) emission, offer positive feedback in the economic sector, and at the same time, provide thebest solution for waste management activities. The forecast datafor 20 years on electricity generation wasused to calculate the GHG emission and its saving when paddy residue is used for electricity generation. The government’scost saving was also identified when paddy residue substituted coal fuel in electricity generation.This paper can provide forecast information so that Malaysia is able to move forward to apply paddy residue as feedstock in energy supply. Hopefully, the data achieved can encourage stakeholder bodies in the implementation of paddy residue inelectricity generation since there is apositive impact towardscost and emission saving.


2002 ◽  
Vol 4 (1-2) ◽  
pp. 26
Author(s):  
Paulo Fernando Lavalle Heilbron Filho ◽  
Jesus Salvador Perez Guerrero ◽  
Elizabeth May Pontedeiro ◽  
Nerbe J. Ruperti, Jr. ◽  
Renato M. Cotta

2000 ◽  
Vol 2 (3) ◽  
pp. 1-10
Author(s):  
T. G. Gruzina ◽  
L. G. Stepura ◽  
M. N. Balakina ◽  
Z. R. Ulberg
Keyword(s):  

Author(s):  
Dipak b pawar ◽  
Prashant narote ◽  
Ganesh pawar ◽  
Tushar narote ◽  
Tejas Mhaske ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document