scholarly journals Stability indicating analysis of bisacodyl by partial least squares regression, spectral residual augmented classical least squares and support vector regression chemometric models: A comparative study

2011 ◽  
Vol 49 (2) ◽  
pp. 91-100 ◽  
Author(s):  
Ibrahim A. Naguib
2017 ◽  
Author(s):  
Jan-Patrick Voß

Die vorliegende Arbeit befasst sich mit dem Bioprozessmonitoring unter Verwendung spektroskopischer Messverfahren und multivariater Datenanalyse nach den Grundsätzen von PAT – Process Analytical Technology. Mit NIR-Spektroskopie und dem Verfahren Soft Independent Modelling of Class Analogy (SIMCA) wurde eine Quali¬tätsbewertung von Hefeextrakten realisiert. Im Vordergrund stand jedoch die Quanti¬fizierung nicht direkt messbarer Größen aus NIR-, Raman- und 2D-Fluoreszenzspektren in pharmazeutischen Produktionsprozessen mit Pichia pastoris. Eine entsprechende Online-Bestimmung mit der Methode Partial Least Squares Regression (PLSR) kam weiterführend zur Regelung der Glycerolkonzentration zum Einsatz. Darüber hinaus wurde die Verwendung nichtspektraler Online-Daten zur Prozessbeobachtung erprobt. Dabei gelang mit Hilfe des nichtlinearen Verfahrens Support Vector Regression (SVR) unter anderem die Bestimmung zellspezifischer Reaktionsraten. ...


2018 ◽  
Vol 26 (6) ◽  
pp. 351-358 ◽  
Author(s):  
Rattapol Pornprasit ◽  
Philaiwan Pornprasit ◽  
Pruet Boonma ◽  
Juggapong Natwichai

Near infrared spectroscopy is a spectroscopic method used for quality and quantity analysis of agriculture products and industry materials. Rubber is a mostly raw material of any products. NIR spectroscopy had been using to analyze the mechanical properties of rubber and polymer materials. Prediction models were built from the correlation between the NIR spectra and mechanical strength values (hardness and tensile strength). Raw data were pretreated to improve the prediction models, where the prediction models were based on partial least squares regression and support vector regression. In the case of hardness prediction, the raw dataset was pretreated with standard normal variate transformation or a combination of Savitzky–Golay smoothing and multiplicative scatter correction, following which orthogonal signal correction and uninformative variable elimination were used for feature selection, and partial least squares regression and support vector regression were applied for the prediction model. For tensile strength prediction, the pretreatments were multiplicative scatter correction or combination of Savitzky–Golay smoothing and multiplicative scatter correction, following which orthogonal signal correction and uninformative variable elimination were used for feature selection, and partial least squares regression and support vector regression were applied for the prediction model. From these processes, the r2 values were greater than 0.9, the bias values were among ±0.5, and the RMSEP values were lower than 5.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ibrahim A. Naguib ◽  
Eglal A. Abdelaleem ◽  
Hala E. Zaazaa ◽  
Essraa A. Hussein

A comparison between partial least squares regression and support vector regression chemometric models is introduced in this study. The two models are implemented to analyze cefoperazone sodium in presence of its reported impurities, 7-aminocephalosporanic acid and 5-mercapto-1-methyl-tetrazole, in pure powders and in pharmaceutical formulations through processing UV spectroscopic data. For best results, a 3-factor 4-level experimental design was used, resulting in a training set of 16 mixtures containing different ratios of interfering moieties. For method validation, an independent test set consisting of 9 mixtures was used to test predictive ability of established models. The introduced results show the capability of the two proposed models to analyze cefoperazone in presence of its impurities 7-aminocephalosporanic acid and 5-mercapto-1-methyl-tetrazole with high trueness and selectivity (101.87 ± 0.708 and 101.43 ± 0.536 for PLSR and linear SVR, resp.). Analysis results of drug products were statistically compared to a reported HPLC method showing no significant difference in trueness and precision, indicating the capability of the suggested multivariate calibration models to be reliable and adequate for routine quality control analysis of drug product. SVR offers more accurate results with lower prediction error compared to PLSR model; however, PLSR is easy to handle and fast to optimize.


2016 ◽  
Vol 99 (2) ◽  
pp. 386-395 ◽  
Author(s):  
Ibrahim A Naguib ◽  
Maha M Abdelrahman ◽  
Mohamed R El Ghobashy ◽  
Nesma A Ali

Abstract Two accurate, sensitive, and selective stability-indicating methods are developed and validated for simultaneous quantitative determination of agomelatine (AGM) and its forced degradation products (Deg I and Deg II), whether in pure forms or in pharmaceutical formulations. Partial least-squares regression (PLSR) and spectral residual augmented classical least-squares (SRACLS) are two chemometric models that are being subjected to a comparative study through handling UV spectral data in range (215–350 nm). For proper analysis, a three-factor, four-level experimental design was established, resulting in a training set consisting of 16 mixtures containing different ratios of interfering species. An independent test set consisting of eight mixtures was used to validate the prediction ability of the suggested models. The results presented indicate the ability of mentioned multivariate calibration models to analyze AGM, Deg I, and Deg II with high selectivity and accuracy. The analysis results of the pharmaceutical formulations were statistically compared to the reference HPLC method, with no significant differences observed regarding accuracy and precision. The SRACLS model gives comparable results to the PLSR model; however, it keeps the qualitative spectral information of the classical least-squares algorithm for analyzed components.


Sign in / Sign up

Export Citation Format

Share Document