scholarly journals Micropatterns and peptide gradient on the inner surface of a guidance conduit synergistically promotes nerve regeneration in vivo

Author(s):  
Deteng Zhang ◽  
Ziming Li ◽  
Haifei Shi ◽  
Yuejun Yao ◽  
Wang Du ◽  
...  
Author(s):  
Sonja Mertsch ◽  
Inga Neumann ◽  
Cosima Rose ◽  
Marc Schargus ◽  
Gerd Geerling ◽  
...  

1990 ◽  
Vol 95 (4) ◽  
pp. 605-615
Author(s):  
C.D. McCaig

Nerve branching is controlled by intrinsic and extrinsic cues, one of which may be a small applied electric field. Lateral processes were induced by passing current through a micropipette placed at 90 degrees to the shaft of a developing nerve. The appearance of processes was a polarised event with a large majority arising from the cathodal facing side of nerves. Whilst an electric field alone may promote branching, the presence of dimethyl sulfoxide (DMSO) or the ganglioside GM1 enhanced branching of developing nerves. It is likely that an applied electric field promotes microtubule disassembly locally along the neurite shaft and that this can lead to a polarised rearrangement of the neuronal cyto-skeleton. It is suggested that the use of an applied electric field in conjunction with these pharmacological agents might enhance nerve regeneration in vivo.


Polymers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1041 ◽  
Author(s):  
Binoy Maiti ◽  
David Díaz Díaz

The human nervous system lacks an inherent ability to regenerate its components upon damage or diseased conditions. During the last decade, this has motivated the development of a number of strategies for nerve regeneration. However, most of those approaches have not been used in clinical applications till today. For instance, although biomaterial-based scaffolds have been extensively used for nerve reparation, the lack of more customized structures have hampered their use in vivo. This highlight focuses mainly on how 3D bioprinting technology, using polymeric hydrogels as bio-inks, can be used for the development of new nerve guidance channels or devices for peripheral nerve cell regeneration. In this concise contribution, some of the most recent and representative examples are highlighted to discuss the challenges involved in various aspects of 3D bioprinting for nerve cell regeneration, specifically when using polymeric hydrogels.


2015 ◽  
Vol 40 (9) ◽  
pp. e35
Author(s):  
Caroline A. Hundepool ◽  
Liselotte F. Bulstra ◽  
Dimitra Kotsougiani ◽  
Steven Hovius ◽  
Allen Bishop ◽  
...  

1982 ◽  
Vol 232 (1) ◽  
pp. 157-161 ◽  
Author(s):  
Göran Lundborg ◽  
Frank M. Longo ◽  
Silvio Varon

2022 ◽  
Vol 11 (2) ◽  
pp. 393
Author(s):  
Alvin Wei Jun Teo ◽  
Hassan Mansoor ◽  
Nigel Sim ◽  
Molly Tzu-Yu Lin ◽  
Yu-Chi Liu

Keratoconus is the most common primary corneal ectasia characterized by progressive focal thinning. Patients experience increased irregular astigmatism, decreased visual acuity and corneal sensitivity. Corneal collagen crosslinking (CXL), a minimally invasive procedure, is effective in halting disease progression. Historically, keratoconus research was confined to ex vivo settings. In vivo confocal microscopy (IVCM) has been used to examine the corneal microstructure clinically. In this review, we discuss keratoconus cellular changes evaluated by IVCM before and after CXL. Cellular changes before CXL include decreased keratocyte and nerve densities, disorganized subbasal nerves with thickening, increased nerve tortuosity and shortened nerve fibre length. Repopulation of keratocytes occurs up to 1 year post procedure. IVCM also correlates corneal nerve status to functional corneal sensitivity. Immediately after CXL, there is reduced nerve density and keratocyte absence due to mechanical removal of the epithelium and CXL effect. Nerve regeneration begins after 1 month, with nerve fibre densities recovering to pre-operative levels between 6 months to 1 year and remains stable up to 5 years. Nerves remain tortuous and nerve densities are reduced. Corneal sensitivity is reduced immediately postoperatively but recovers with nerve regeneration. Our article provides comprehensive review on the use of IVCM imaging in keratoconus patients.


Sign in / Sign up

Export Citation Format

Share Document