scholarly journals Additively manufactured metallic biomaterials

Author(s):  
Elham Davoodi ◽  
Hossein Montazerian ◽  
Anooshe Sadat Mirhakimi ◽  
Masoud Zhianmanesh ◽  
Osezua Ibhadode ◽  
...  
Nanoscale ◽  
2021 ◽  
Author(s):  
Srijan Acharya ◽  
Satyam Suwas ◽  
Kaushik Chatterjee

Metallic materials are widely used to prepare implants for both short-term and long-term use in the human body. The performance of these implants is greatly influenced by their surface characteristics,...


2014 ◽  
Vol 922 ◽  
pp. 1-6
Author(s):  
Aaron F. Cipriano ◽  
Christopher Miller ◽  
Hui Nan Liu

Magnesium (Mg)-based alloys have attracted great interest as metallic biomaterials for orthopedic applications due to their biocompatibility, biodegradability, and mechanical properties that resemble those of cortical bone. However, the potential toxicity of alloying elements in commercially available Mg alloys makes it critical to engineer and screen new alloys specifically for biomedical applications. The objective of this study was to evaluate and compare the in vitrodegradation and cytocompatibility of two distinct Mg - Zinc (Zn) - Calcium (Ca) alloys (Mg-4%Zn-1%Ca and Mg-9%Zn-1%Ca, wt. %; abbreviated as ZCa41 and ZCa91, respectively) using a bonemarrow derived mesenchymal stem cell (BMSC) model. Both Zn and Ca play critical roles in boneformation and growth, and have been shown to increase mechanical and corrosion properties of Mgalloys. BMSCs provide vertebrates the continuous supply of osteoblasts needed for bone remodelingand repair, and thus were selected to determine the effect of increasing Zn content on cell behavior.Surface microstructure and composition of the alloys were characterized before and after BMSC culture using field emission scanning electron microscopy (FESEM) and energy dispersive X-rayspectroscopy (EDS). Thermanox® treated glass and plasma treated tissue culture polystyrene were used as a control and reference, respectively. Results indicated that the ZCa91 alloy improved BMSC adhesion as compared with ZCa41 alloy. The formation of high-aspect ratio needle-likefeatures on the surface of ZCa41 alloy after its degradation in cell culture media was speculated tocontribute to the lower cell adhesion. This study provided an early indication on cytocompatibility of Mg-Zn-Ca alloys for biomedical applications.


2007 ◽  
Vol 352 ◽  
pp. 297-300
Author(s):  
Toshikazu Akahori ◽  
Mitsuo Niinomi ◽  
Masaaki Nakai

Titanium and its alloys have been widely used as biomaterials for hard tissue replacements because of their excellent mechanical properties and biocompatibility. However, the bonding between their surfaces and bone is not enough after implantation. The bioactive surface modification such as a hydroxyapatite (HAp) coating on their surfaces has been investigated. Recently, a simple method for forming HAp layer on the surfaces of titanium and its alloys has been developed. This method is called as alkaline treatment process. In this method, HAp deposits on the surfaces of titanium and its alloys by dipping into simulated body fluid (SBF) after an alkaline solution treatment that is followed by a baking treatment (alkaline treatment). This process is applicable to newly developed beta-type Ti-29Nb-13Ta-4.6Zr alloy (TNTZ) for biomedical applications achieving bioactive HAp modification. In this study, the morphology of the HAp layer formed on the surface of TNTZ was investigated after various alkaline treatments followed by dipping in SBF. The formability of HAp on the surface of TNTZ was then discussed. The formability of HAp on TNTZ is much lower than that of commercially pure Ti, Ti-6Al-4V ELI and Ti-15Mo-5Zr-3Al alloys, which are representative metallic biomaterials. The formability of HAp on TNTZ is improved by increasing the amount of Na in the sodium titanate gels formed during an alkaline solution treatment where the NaOH concentrations and the dipping time are over 5 M and 172.8 ks, respectively. The formability of HAp on TNTZ is considerably improved by dipping in a 5 M NaOH solution for 172.8 ks. This condition for alkaline solution treatment process is the most suitable for TNTZ.


Author(s):  
D. Muster ◽  
M. Champy ◽  
S. Szmukler ◽  
C. Baltzinger ◽  
C. Burggraf

2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Ridvan Yamanoglu

In the world market, medical products emerge as a sector that directly concerns people’s life quality and related activities. The medical product industry continues to grow rapidly in the world, especially in developed countries in line with the advances in technology, along with the elderly population and welfare level. In this context, biomedical implants constitute an important branch of the medical product industry. Among the materials preferred for implant production, the metallic biomaterials are very popular due to their superior mechanical properties. Ti and Ti alloys, among the metallic biomaterials, draw more attention considerably compared to stainless steel and Co-Cr alloys due to their characteristic features such as high specific strength and superior corrosion resistance, low density and low modulus of elasticity. Although the elastic modulus of titanium and its alloys is low compared to the other metallic biomaterials, it remains higher than bone. β-type Ti alloys have been developed to prevent the stress shielding effect caused by the elastic modulus mismatch and sterilization of the biomaterials used in the body from toxic alloy elements. In this article, the effect of the use of β-type Ti alloys, which are extremely prospective materials and open to development, in the body on host organisms, and the efficiency of the developed alloys have been investigated.


2018 ◽  
Vol 69 (8) ◽  
pp. 346-350
Author(s):  
Sayaka MIYABE ◽  
Kotaro DOI ◽  
Shinji FUJIMOTO

Sign in / Sign up

Export Citation Format

Share Document