tissue culture polystyrene
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 5)

H-INDEX

15
(FIVE YEARS 0)

2021 ◽  
Vol 22 (8) ◽  
pp. 4010
Author(s):  
Esen Sayin ◽  
Erkan Türker Baran ◽  
Ahmed Elsheikh ◽  
Vivek Mudera ◽  
Umber Cheema ◽  
...  

The physiological O2 microenvironment of mesenchymal stem cells (MSCs) and osteoblasts and the dimensionality of a substrate are known to be important in regulating cell phenotype and function. By providing the physiologically normoxic environments of bone marrow (5%) and matrix (12%), we assessed their potential to maintain stemness, induce osteogenic differentiation, and enhance the material properties in the micropatterned collagen/silk fibroin scaffolds that were produced in 2D or 3D. Expression of osterix (OSX) and vascular endothelial growth factor A (VEGFA) was significantly enhanced in the 3D scaffold in all oxygen environments. At 21% O2, OSX and VEGFA expressions in the 3D scaffold were respectively 13,200 and 270 times higher than those of the 2D scaffold. Markers for assessing stemness were significantly more pronounced on tissue culture polystyrene and 2D scaffold incubated at 5% O2. At 21% O2, we measured significant increases in ultimate tensile strength (p < 0.0001) and Young’s modulus (p = 0.003) of the 3D scaffold compared to the 2D scaffold, whilst 5% O2 hindered the positive effect of cell seeding on tensile strength. In conclusion, we demonstrated that the 3D culture of MSCs in collagen/silk fibroin scaffolds provided biomimetic cues for bone progenitor cells toward differentiation and enhanced the tensile mechanical properties.



2021 ◽  
Author(s):  
David Boaventura Gomes ◽  
Ana Filipa Henriques Lourenço ◽  
Clarissa Tomasina ◽  
Bryan Chömpff ◽  
Hong Liu ◽  
...  

AbstractHuman mesenchymal stem/stromal cells (hMSCs) present a great opportunity for tissue regeneration due to their multipotent capacity. However, when cultured on 2D tissue culture polystyrene (TCPS) plates, hMSCs lose their differentiation capacity and clinical potential. It has been reported that cells need a more physiologically relevant micro-environment that allows them to maintain their phenotype. Here, we have developed a 3D alginate hydrogel functionalized with the Arg-Gly-Asp (RGD) sequence and having low mechanical stiffness that mimics the mechanical properties (>5 KPa) of bone marrow. hMSCs cultured in these hydrogels appeared to be halted in G1 phase of the cell cycle and to be non-proliferative, as shown by flow cytometry and 5-Ethynyl-2’-deoxyuridine (EdU) staining, respectively. Their quiescent state was characterized by an upregulation of enhancer of zeste homolog 1 (EZH1) at the gene level, forkhead box O3 (FoxO3) and cyclin-dependent kinase inhibitor 1B (p27) at the gene and protein levels compared to hMSCs grown in 2D TCPS. Comparative studies in 3D hydrogels of alginate-RGD presenting higher concentration of the peptide or in collagen hydrogels revealed that independently of the concentration of RGD or the chemistry of the adhesion motives, hMSCs cultured in 3D presented a similar phenotype.This quiescent phenotype was exclusive of 3D cultures. In 2D, even when cells were starved of fetal bovine serum (FBS) and became also non-proliferative, the expression of these markers was not observed. We propose that this difference may be the result of mammalian target of rapamycin complex 1 (mTORC1) being downregulated in hMSCs cultured in 3D hydrogels, which induces cells to be in “deep” quiescence and be kept alive ex vivo for a long period of time. Our results represent a step forward towards understanding hMSCs quiescence and its molecular pathways, providing more insight for hMSCs cell therapies.



Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 218
Author(s):  
Qiuyue Peng ◽  
Martyna Duda ◽  
Guoqiang Ren ◽  
Zongzhe Xuan ◽  
Cristian Pablo Pennisi ◽  
...  

In order to enhance the therapeutic potential, it is important that sufficient knowledge regarding the dynamic changes of adipose-derived stem cell (ASC) immunophenotypical and biological properties during in vitro growth is available. Consequently, we embarked on a study to follow the evolution of highly defined cell subsets from three unrelated donors in the course of eight passages on tissue culture polystyrene. The co-expression patterns were defined by panels encompassing seven and five cell surface markers, including CD34, CD146, CD166, CD200, CD248, CD271, and CD274 and CD29, CD31, CD36, CD201, and Stro-1, respectively. The analysis was performed using multichromatic flow cytometry. We observed a major paradigm shift, where the CD166-CD34+ combination which was found across all cell subsets early in the culture was replaced by the CD166+ phenotype as the population homogeneity increased with time. At all analysis points, the cultures were dominated by a few major clones that were highly prevalent in most of the donors. The selection process resulted in two predominant clones in the larger panel (CD166+CD34−CD146−CD271− CD274−CD248−CD200− and CD166+CD34+ CD146−CD271−CD274−CD248−CD200−) and one clone in the smaller panel (CD29+CD201+CD36− Stro-1− CD31−). The minor subsets, including CD166+CD34−CD146−CD271+CD274−CD248−CD200− and CD166+CD34+CD146+CD271−CD274−CD248−CD200−, and CD29+CD201−CD36−Stro-1−CD31−, CD29+CD201+CD36−Stro-1+CD31−, and CD29+CD201+CD36+Stro-1−CD31−, in the seven and five marker panels, respectively, were, on the other, hand highly fluctuating and donor-dependent. The results demonstrate that only a limited number of phenotypical repertoires are possible in ASC cultures. Marked differences in their relative occurrence between distinct individuals underscore the need for potency standardization of different ASC preparation to improve the clinical outcome.



Author(s):  
Otto J. Juhl ◽  
Anna-Blessing Merife ◽  
Yue Zhang ◽  
Christopher A. Lemmon ◽  
Henry J. Donahue

Substrate surface characteristics such as roughness, wettability and particle density are well-known contributors of a substrate's overall osteogenic potential. These characteristics are known to regulate cell mechanics as well as induce changes in cell stiffness, cell adhesions, and cytoskeletal structure. Pro-osteogenic particles, such as hydroxyapatite, are often incorporated into a substrate to enhance the substrates osteogenic potential. However, it is unknown which substrate characteristic is the key regulator of osteogenesis. This is partly due to the lack of understanding of how these substrate surface characteristics are transduced by cells. In this study substrates composed of polycaprolactone (PCL) and carbonated hydroxyapatite particles (HAp) were synthesized. HAp concentration was varied, and a range of surface characteristics created. The effect of each substrate characteristic on osteoblastic differentiation was then examined. We found that, of the characteristics examined, only HAp density, and indeed a specific density (85 particles/cm2), significantly increased osteoblastic differentiation. Further, an increase in focal adhesion maturation and turnover was observed in cells cultured on this substrate. Moreover, β-catenin translocation from the membrane bound cell fraction to the nucleus was more rapid in cells on the 85 particle/cm2 substrate compared to cells on tissue culture polystyrene. Together, these data suggest that particle density is one pivotal factor in determining a substrates overall osteogenic potential. Additionally, the observed increase in osteoblastic differentiation is a at least partly the result of β-catenin translocation and transcriptional activity suggesting a β-catenin mediated mechanism by which substrate surface characteristics are transduced.



Author(s):  
Ya-Chu Liu ◽  
Lee-Kiat Ban ◽  
Henry Hsin-Chung Lee ◽  
Hsin-Ting Lee ◽  
Yu-Tang Chang ◽  
...  

Human pluripotent stem cells (hPSCs) are typically cultivated on extracellular matrix (ECM) protein-coated dishes in xeno-free culture conditions. We supplemented mixed ECM proteins (laminin-511 and recombinant vitronectin, rVT) in culture...



Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1697 ◽  
Author(s):  
Felix A. Blyakhman ◽  
Grigory Yu. Melnikov ◽  
Emilia B. Makarova ◽  
Fedor A. Fadeyev ◽  
Daiana V. Sedneva-Lugovets ◽  
...  

The static magnetic field was shown to affect the proliferation, adhesion and differentiation of various types of cells, making it a helpful tool for regenerative medicine, though the mechanism of its impact on cells is not completely understood. In this work, we have designed and tested a magnetic system consisting of an equidistant set of the similar commercial permanent magnets (6 × 4 assay) in order to get insight on the potential of its experimental usage in the biological studies with cells culturing in a magnetic field. Human dermal fibroblasts, which are widely applied in regenerative medicine, were used for the comparative study of their proliferation rate on tissue culture polystyrene (TCPS) and on the polyacrylamide ferrogels with 0.00, 0.63 and 1.19 wt % concentrations of γ-Fe2O3 magnetic nanoparticles obtained by the well-established technique of laser target evaporation. We used either the same batch as in previously performed but different biological experiments or the same fabrication conditions for fabrication of the nanoparticles. This adds special value to the understanding of the mechanisms of nanoparticles contributions to the processes occurring in the living systems in their presence. The magnetic field increased human dermal fibroblast cell proliferation rate on TCPS, but, at the same time, it suppressed the growth of fibroblasts on blank gel and on polyacrylamide ferrogels. However, the proliferation rate of cells on ferrogels positively correlated with the concentration of nanoparticles. Such a dependence was observed both for cell proliferation without the application of the magnetic field and under the exposure to the constant magnetic field.



2020 ◽  
Author(s):  
Aysegul Dede Eren ◽  
Aliaksei Vasilevich ◽  
E. Deniz Eren ◽  
Phanikrishna Sudarsanam ◽  
Urandelger Tuvshindorj ◽  
...  

AbstractThe tenocyte niche contains biochemical and biophysical signals that are needed for tendon homeostasis. The tenocyte phenotype is correlated with cell shape in vivo and in vitro, and shape-modifying cues are needed for tenocyte phenotypical maintenance. Indeed, cell shape changes from elongated to spread when cultured on a flat surface, and rat tenocytes lose the expression of phenotypical markers throughout five passages. We hypothesized that tendon gene expression can be preserved by culturing cells in the native tendon shape. To this end, we reproduced the tendon topographical landscape into tissue culture polystyrene, using imprinting technology. We confirmed that the imprints forced the cells into a more elongated shape, which correlated with the level of Scleraxis expression. When we cultured the tenocytes for seven days on flat surfaces and tendon imprints, we observed a decline in tenogenic marker expression on flat but not on imprints. This research demonstrates that native tendon topography is an important factor contributing to the tenocyte phenotype. Tendon imprints therefore provide a powerful platform to explore the effect of instructive cues originating from native tendon topography on guiding cell shape, phenotype and function of tendon-related cells.



Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1598
Author(s):  
Evgenia Tsanaktsidou ◽  
Olga Kammona ◽  
Norina Labude ◽  
Sabine Neuss ◽  
Melanie Krüger ◽  
...  

Methacrylated hyaluronic acid (MeHA) and chondroitin sulfate (CS)-biofunctionalized MeHA (CS-MeHA), were crosslinked in the presence of a matrix metalloproteinase 7 (MMP7)-sensitive peptide. The synthesized hydrogels were embedded with either human mesenchymal stem cells (hMSCs) or chondrocytes, at low concentrations, and subsequently cultured in a stem cell medium (SCM) or chondrogenic induction medium (CiM). The pivotal role of the synthesized hydrogels in promoting the expression of cartilage-related genes and the formation of neocartilage tissue despite the low concentration of encapsulated cells was assessed. It was found that hMSC-laden MeHA hydrogels cultured in an expansion medium exhibited a significant increase in the expression of chondrogenic markers compared to hMSCs cultured on a tissue culture polystyrene plate (TCPS). This favorable outcome was further enhanced for hMSC-laden CS-MeHA hydrogels, indicating the positive effect of the glycosaminoglycan binding peptide on the differentiation of hMSCs towards a chondrogenic phenotype. However, it was shown that an induction medium is necessary to achieve full span chondrogenesis. Finally, the histological analysis of chondrocyte-laden MeHA hydrogels cultured on an ex vivo osteochondral platform revealed the deposition of glycosaminoglycans (GAGs) and the arrangement of chondrocyte clusters in isogenous groups, which is characteristic of hyaline cartilage morphology.



Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 924
Author(s):  
Hiroki Masuda ◽  
Yoshinori Arisaka ◽  
Ruriko Sekiya-Aoyama ◽  
Tetsuya Yoda ◽  
Nobuhiko Yui

Biointerfaces based on polyrotaxane (PRX), consisting of α-cyclodextrins (α-CDs) threaded on a poly(ethylene glycol) (PEG) chain, are promising functionalized platforms for culturing cells. PRXs are characterized by the molecular mobility of constituent molecules where the threading α-CDs can move and rotate along the PEG chain. Taking advantage of this mobility, we have previously succeeded in demonstrating the regulation of cellular responses, such as cellular adhesion, proliferation, and differentiation. In the present study, we investigated differences in the cellular responses to PRX surfaces versus commercially available tissue culture polystyrene (TCPS) surfaces using fibroblasts, preosteoblasts, and preadipocytes. PRX surfaces were found to more significantly promote cellular proliferation than the TCPS surfaces, regardless of the cell type. To identify the signaling pathways involved in the activation of cellular proliferation, a DNA microarray analysis was performed. PRX surfaces showed a significant increase in the integrin-mediated cell adhesion and focal adhesion pathways. Furthermore, PRX surfaces also promoted osteoblast differentiation more than TCPS. These results suggest that structural features of PRX surfaces act as mechanical cues to dominate cellular proliferation and differentiation.



Bioimpacts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Fatemeh Rahimi-Sherbaf ◽  
Samad Nadri ◽  
Ali Rahmani ◽  
Atousa Dabiri Oskoei

Introduction: Transplantation of stem cells with a nanofibrous scaffold is a promising approach for spinal cord injury therapy. The aim of this work was to differentiate neural-like cells from placenta-derived mesenchymal stem cells (PDMSCs) using suitable induction reagents in three (3D) and two dimensional (2D) culture systems. Methods: After isolation and characterization of PDMSCs, the cells were cultivated on poly-L-lactide acid (PLLA)/poly caprolactone (PCL) nanofibrous scaffold and treated with a neuronal medium for 7 days. Electron microscopy, qPCR, and immunostaining were used to examine the differentiation of PDMSCs (on scaffold and tissue culture polystyrene [TCPS]) and the expression rate of neuronal markers (beta-tubulin, nestin, GFAP, and MAP-2). Results: qPCR analysis showed that beta-tubulin (1.672 fold; P ≤ 0.0001), nestin (11.145 fold; P ≤ 0.0001), and GFAP (80.171; P ≤ 0.0001) gene expressions were higher on scaffolds compared with TCPS. Immunofluorescence analysis showed that nestin and beta-tubulin proteins were recognized in the PDMSCs differentiated on TCPS and scaffold after 7 days in the neuroinductive differentiation medium. Conclusion: Taken together, these results delegated that PDMSCs differentiated on PLLA/PCL scaffolds are more likely to differentiate towards diversity lineages of neural cells. It proposed that PDMSCs have cell subpopulations that have the capability to be differentiated into neurogenic cells.



Sign in / Sign up

Export Citation Format

Share Document