Interactions between Spathius agrili (Hymenoptera: Braconidae) and Tetrastichus planipennisi (Hymenoptera: Eulophidae), larval parasitoids of Agrilus planipennis (Coleoptera: Buprestidae)

2010 ◽  
Vol 52 (2) ◽  
pp. 188-193 ◽  
Author(s):  
Michael D. Ulyshen ◽  
Jian J. Duan ◽  
Leah S. Bauer
2020 ◽  
Vol 113 (3) ◽  
pp. 1145-1151 ◽  
Author(s):  
Jian J Duan ◽  
Leah S Bauer ◽  
Roy Van Driesche ◽  
Jonathan M Schmude ◽  
Toby Petrice ◽  
...  

Abstract Climate change has been linked to shifts in the distribution and phenology of species although little is known about the potential effects that extreme low winter temperatures may have on insect host–parasitoid interactions. In late January 2019, northern regions of the United States experienced a severe cold wave caused by a weakened jet stream, destabilizing the Arctic polar vortex. Approximately 3 mo later at six study sites in southern Michigan and three in southern Connecticut, we sampled the overwintering larvae of the emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), and two larval parasitoids, Spathius galinae (Hymenoptera: Braconidae) and Tetrastichus planipennisi (Hymenoptera: Eulophidae), that are being introduced as emerald ash borer biocontrol agents in North America. At these nine study sites, emerald ash borer-infested ash trees and/or saplings were debarked and each overwintering emerald ash borer and parasitoid larva was then examined for cold-induced mortality, as indicated by a brown coloration, flaccid, and watery consistency. In early spring in Michigan, we found 4.5–26% of emerald ash borer larvae, 18–50% of S. galinae larvae, and 8–35% of T. planipennisi larvae were killed by cold. In Connecticut where temperatures were more moderate than in Michigan during the 2019 cold wave, <2% of the larval hosts and parasitoids died from cold injury. Our findings revealed that cold-induced mortality of overwintering larvae of emerald ash borer and its larval parasitoids varied by location and species, with higher mortality of parasitoid larvae in most Michigan sites compared to host larvae. The potential impacts of our findings on the management of emerald ash borer using biocontrol are discussed.


2019 ◽  
Vol 113 (2) ◽  
pp. 622-632 ◽  
Author(s):  
Michael I Jones ◽  
Juli R Gould ◽  
Hope J Mahon ◽  
Melissa K Fierke

Abstract Biological control offers a long-term and sustainable option for controlling the destructive forest pest emerald ash borer (EAB), Agrilus planipennis Fairmaire, in North America. Three larval parasitoids, Spathius agrili Yang (Hymenoptera: Braconidae), Tetrastichus planipennisi Yang (Eulophidae), and Spathius galinae Belokobylskij & Strazanac, have been introduced to North America from the native range of EAB (northeastern Asia). While T. planipennisi appears to be persisting where it has been introduced in northern United States, S. agrili failed to establish in northeastern states. The more recently identified parasitoid S. galinae was recovered from the Russian Far East and climate matching suggests it should be suited for release in colder climates. We collected data on the phenology of EAB and its introduced larval parasitoids from colonies established in an insectary, growth chambers, and field-caged trees in Syracuse, New York to determine whether asynchrony between parasitoids and EAB or climate could impact establishment and persistence. Phenological data indicated EAB has one and 2-yr life cycles in New York, with parasitoid-susceptible EAB larvae available spring to fall for parasitism. Insectary and growth chamber studies indicated S. galinae and T. planipennisi were synchronous with EAB phenology, and field studies suggested both species could overwinter in northeastern climates. Spathius agrili was asynchronous with EAB phenology and climate, emerging when fewer parasitoid-susceptible EAB larvae were available and temperatures were not optimal for survival. Our results suggest S. galinae and T. planipennisi are suited for biological control of EAB at the northern limits of its range in North America.


2015 ◽  
Vol 147 (3) ◽  
pp. 300-317 ◽  
Author(s):  
Leah S. Bauer ◽  
Jian J. Duan ◽  
Juli R. Gould ◽  
Roy Van Driesche

AbstractFirst detected in North America in 2002, the emerald ash borer (EAB) (Agrilus planipennis Fairmaire; Coleoptera: Buprestidae), an invasive phloem-feeding beetle from Asia, has killed tens of millions of ash (Fraxinus Linnaeus; Oleaceae) trees. Although few parasitoids attack EAB in North America, three parasitoid species were found attacking EAB in China: the egg parasitoid Oobius agrili Zhang and Huang (Hymenoptera: Encyrtidae) and two larval parasitoids Tetrastichus planipennisi Yang (Hymenoptera: Eulophidae) and Spathius agrili Yang (Hymenoptera: Braconidae). In 2007, classical biological control of EAB began in the United States of America after release of these three species was approved. In 2013, release of the larval parasitoids was approved in Canada. Research continues at study sites in Michigan, United States of America where the establishment, prevalence, and spread of O. agrili and T. planipennisi have been monitored since 2008. However, establishment of S. agrili remains unconfirmed in northern areas, and its release is now restricted to regions below the 40th parallel. In 2015, approval for release of Spathius galinae Belokobylskij (Hymenoptera: Braconidae), an EAB larval parasitoid from the Russian Far East, may be granted in the United States of America. Researchers are guardedly optimistic that a complex of introduced and native natural enemies will regulate EAB densities below a tolerance threshold for survival of ash species or genotypes in forested ecosystems.


2020 ◽  
Vol 113 (6) ◽  
pp. 2641-2649
Author(s):  
Juli R Gould ◽  
Melissa L Warden ◽  
Benjamin H Slager ◽  
Theresa C Murphy

Abstract Emerald ash borer, Agrilus planipennis Fairmaire (Coleoptera: Buprestidae), is one of the most serious forest pests in the United States. Ongoing research indicates that establishment of larval parasitoids depends upon the season-long availability of host stages susceptible to parasitism. We monitored emerald ash borer overwintering stages at 90 sites across 22 states to: 1) produce a model of the percentage of emerald ash borer overwintering as non-J larvae; 2) link that model to establishment of Tetrastichus planipennisi; and 3) explore changes to our model under climate change scenarios. Accumulated growing degree days (GDD) is an important predictor of the proportion of emerald ash borer overwintering as non-J larvae (1–4 instar larvae under the bark; available to parasitoids emerging in spring) versus J-larvae (fourth-instar larvae in pupal chambers in the outer wood; unavailable to parasitoids). From north to south, the availability of non-J emerald ash borer larvae in the spring decreases as accumulated GDD increases. In areas where the model predicted >46–75%, >30–46%, >13–30%, or ≤13% of emerald ash borer overwintering as non-J larvae, the probability of establishment of T. planipennisi was 92%, 67%, 57%, and 21%, respectively. We determined that 13% of emerald ash borer overwintering as non-J larvae was the lowest threshold for expected T. planipennisi establishment. Additional modeling predicts that under climate change, establishment of T. planipennisi will be most affected in the Central United States, with areas that are currently suitable becoming unsuitable. Our results provide a useful tool for the emerald ash borer biological control program on how to economically and successfully deploy emerald ash borer biological control agents.


2020 ◽  
Vol 46 (5-6) ◽  
pp. 508-519
Author(s):  
Allard A. Cossé ◽  
Bruce W. Zilkowski ◽  
Yunfan Zou ◽  
Jocelyn G. Millar ◽  
Leah Bauer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document