The mechanism of fiber cutting during enzymatic hydrolysis of wood biomass

Author(s):  
Kimberley Clarke ◽  
Xinping Li ◽  
Kecheng Li
2021 ◽  
Vol 55 (5-6) ◽  
pp. 637-647
Author(s):  
ANNA GAŁĄZKA ◽  
JAN SZADKOWSKI

The aim of the present study was to investigate the effect of steam explosion pretreatment, without maintaining the heating temperature, on the yield of enzymatic hydrolysis of wood biomass. Genetically modified poplar wood was used for the investigation. The pretreatment process was conducted at temperatures of 160 °C, 175 °C, 190 °C and 205 °C. Then, the system was rapidly decompressed. The heating medium was water. The chemical composition of biomass was determined before and after the steam explosion and then enzymatic hydrolysis was performed. The results of the chemical composition analysis showed a change in the holocellulose content in the analyzed biomass (about 80% for the native sample and 72% for the biomass sample treated at 205 °C), a decrease in the hemicelluloses content from about 40% (native sample) to 16% for the sample treated at 205 °C. The results of enzymatic hydrolysis showed the lowest glucose extraction efficiency for biomass hydrolysis after the treatment at 160 °C, of only about 9% compared to the theoretical content of glucose from the cellulose contained in hydrolysed wood biomass. The highest results were obtained for the samples treated at 190 °C and 205 °C. The study also estimated the processing costs, as a function of the heating medium (steam, water) and energy source (atomic energy, hard coal, natural gas, biomass), assuming heating with electric heaters. From the economic point of view, it is advantageous to use steam heating medium, and either natural gas or biomass as an energy source.


2013 ◽  
Vol 142 ◽  
pp. 540-545 ◽  
Author(s):  
Hong-Yan Mou ◽  
Elina Orblin ◽  
Kristiina Kruus ◽  
Pedro Fardim

Author(s):  
Marcin Lukasiewicz ◽  
Anna Osowiec ◽  
Magdalena Marciniak

2018 ◽  
Author(s):  
Ángel Batallas ◽  
Erenio González ◽  
Carmen Salvador ◽  
Jonathan Villavicencio ◽  
Humberto González Gavilánez ◽  
...  

2019 ◽  
Vol 15 (3) ◽  
pp. 296-303 ◽  
Author(s):  
Swapnil Gaikwad ◽  
Avinash P. Ingle ◽  
Silvio Silverio da Silva ◽  
Mahendra Rai

Background: Enzymatic hydrolysis of cellulose is an expensive approach due to the high cost of an enzyme involved in the process. The goal of the current study was to apply magnetic nanomaterials as a support for immobilization of enzyme, which helps in the repeated use of immobilized enzyme for hydrolysis to make the process cost-effective. In addition, it will also provide stability to enzyme and increase its catalytic activity. Objective: The main aim of the present study is to immobilize cellulase enzyme on Magnetic Nanoparticles (MNPs) in order to enable the enzyme to be re-used for clean sugar production from cellulose. Methods: MNPs were synthesized using chemical precipitation methods and characterized by different techniques. Further, cellulase enzyme was immobilized on MNPs and efficacy of free and immobilized cellulase for hydrolysis of cellulose was evaluated. Results: Enzymatic hydrolysis of cellulose by immobilized enzyme showed enhanced catalytic activity after 48 hours compared to free enzyme. In first cycle of hydrolysis, immobilized enzyme hydrolyzed the cellulose and produced 19.5 ± 0.15 gm/L of glucose after 48 hours. On the contrary, free enzyme produced only 13.7 ± 0.25 gm/L of glucose in 48 hours. Immobilized enzyme maintained its stability and produced 6.15 ± 0.15 and 3.03 ± 0.25 gm/L of glucose in second and third cycle, respectively after 48 hours. Conclusion: This study will be very useful for sugar production because of enzyme binding efficiency and admirable reusability of immobilized enzyme, which leads to the significant increase in production of sugar from cellulosic materials.


2020 ◽  
Vol 204 ◽  
pp. 106407 ◽  
Author(s):  
Shengxin An ◽  
Wenzhi Li ◽  
Fengyang Xue ◽  
Xu Li ◽  
Ying Xia ◽  
...  

2013 ◽  
Vol 85 (17) ◽  
pp. 8121-8126 ◽  
Author(s):  
Britta Opitz ◽  
Andreas Prediger ◽  
Christian Lüder ◽  
Marrit Eckstein ◽  
Lutz Hilterhaus ◽  
...  

2014 ◽  
Vol 98 (12) ◽  
pp. 5765-5774 ◽  
Author(s):  
Yaping Shang ◽  
Rongxin Su ◽  
Renliang Huang ◽  
Yang Yang ◽  
Wei Qi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document