Definition of the optimal content of used cooking oil methyl ester in blends fuelling a turbocharged diesel engine

2021 ◽  
Vol 150 ◽  
pp. 106098
Author(s):  
G. Zamboni ◽  
M. Capobianco
2021 ◽  
Author(s):  
Tikendra Nath Verma ◽  
Abhishek Dasore ◽  
Pankaj Shrivastava ◽  
Ümit Ağbulut ◽  
Suat Sarıdemir ◽  
...  

Abstract In this study, exergy, energy, performance and emission analysis were investigated for the repurpose used cooking oil (RUCO), Jatropha curcas (JC), Pongamia Pinnata (PP) and petroleum diesel fuel (PDF) fueled compression ignition engine under various engine loads. In this study, 20% of each biodiesel was tested in single cylinder, four stroke, diesel engine, given that open literature shows the potential use of biodiesel of up to 20% in a diesel engine without modification. The diesel engine was used to investigate their performance, combustion and emission characteristics of diesel-repurpose used cooking oil, Jatropha curcas, and Pongamia Pinnata fuel samples at different compression ratios and load condition. The results showed that thermal efficiency is higher with the PDF compared to DRUCO20, DJC20, DPP20 biodiesel blends. The exhaust gas temperature decreased and specific fuel consumption of the engine were increased by adding RUCO, Jatropha curcas, Pongamia Pinnata to petroleum diesel fuel. Engine ecological analysis showed that blended fuel reduces the average hydrocarbons (HC), carbon monoxide (CO) and NO X than petroleum diesel fuel. While DRUCO20 showed better performance and reduction in ecological analysis but higher ecological of CO 2 is comparable with DCJ20 and DPP20.


Fuel ◽  
2019 ◽  
Vol 257 ◽  
pp. 116060 ◽  
Author(s):  
S.K. Nayak ◽  
P.C. Mishra ◽  
M.M. Noor ◽  
F.Y. Hagos ◽  
K. Kadirgama ◽  
...  

2021 ◽  
Vol 0 (6) ◽  
pp. 388
Author(s):  
Arifah Nurfitriyah ◽  
Anas Assari ◽  
Firman Satria Pamungkas ◽  
Ardita Elliyanti ◽  
Ahmad Hawky Darmawan ◽  
...  

Author(s):  
R. Anand ◽  
G. R. Kannan ◽  
P. Karthikeyan

The growing environmental concerns and the depletion of petroleum reserves have caused the development of alternative fuels. Biodiesel and alcohols are receiving increasing attention as alternative fuels for diesel engines due to well oxygenated, renewable fuels. In this study, a single cylinder, naturally aspirated, direct injection diesel engine has been experimentally investigated using ethanol-blended waste cooking oil methyl ester. Various proportion of biodiesel-ethanol blends were used in stability test at the different temperatures from 10 °C to 40 °C in the increment of 10°C. Based on the stability tests and improvement in fuel properties, B90E10 (90% biodiesel and 10% ethanol) and B80E20 (80% biodiesel and 20% ethanol) were selected for this investigation. Test results revealed that the improved engine characteristics with the use of B9E10 especially in comparison with B80E20. Reduction in brake thermal efficiency by 3.8% and slightly higher brake specific energy consumption of 15.1% were observed with B90E10 when compared to diesel at 100% load condition. Carbon monoxide, unburnt hydrocarbon, nitric oxide and smoke emission of B90E10 were reduced by 0.09% by vol., 10 ppm, 187 ppm and 12.9%, respectively compared to diesel. B90E10 exhibited lower peak pressure of 70.5 bar, slightly longer ignition delay of 14.2 °CA, and combustion duration of 43.3 °CA was also observed at 100% load condition.


Sign in / Sign up

Export Citation Format

Share Document