Differential lethal action of C17:2 and C17:0 anacardic acid derivatives in Trypanosoma cruzi – A mechanistic study

2020 ◽  
Vol 102 ◽  
pp. 104068
Author(s):  
Eric Umehara ◽  
Thais A. Costa Silva ◽  
Viviane M. Mendes ◽  
Rafael C. Guadagnin ◽  
Patricia Sartorelli ◽  
...  
Author(s):  
MÁRCIA MACHADO MARINHO ◽  
RICARDO PIRES DOS SANTOS ◽  
EVELINE MATIAS BEZERRA ◽  
RONER FERREIRA COSTA ◽  
CIRO SIQUEIRA FIGUEIRA ◽  
...  

Objective: The objective of this study was to use the molecular fractionation with conjugate caps (MFCC) method to elucidate the possible interaction mechanism of anacardic acid (AA) with the saturated alkyl chain (AA0) in the Trypanosoma cruzi glyceraldehyde-3-phosphate dehydrogenase (TcGAPHD) enzyme. Methods: Initially, the geometry optimization of the AA three-dimensional structure (with the pentadecyl chain) was performed using density functional theory (B3LYP) calculations. With the AA0 optimization data, it was possible to plot the molecular electrostatic potential (MESP) surface. Molecular docking simulation was performed using automated coupling with the AutoDock Vina program. The best-fit conformation in the docking simulation of AA0 is the binding site used for the construction of the TcGAPHD-AA0 complex. Interaction energies between the AA0 molecule and the amino acid residues of the TcGAPHD enzyme were estimated using the MFCC strategy. Results: To obtain more reliable quantitative information on the interaction of AA with the active site of the TcGAPHD enzyme, the fragmentation method was combined with conjugated layers (MFCC) and molecular docking. It can be observed that the AA0 molecule occupies a region near the active site of the chalepin molecule in the TcGAPHD enzyme, and the Ile13 residue has the strongest binding energy of approximately 25 kcal/mol with AA0, through a strong Van der Waals interaction. Conclusion: The paper presents an improved quantitative analysis approach for assessing the contribution of individual amino acids to the free energy of interaction between AA and TcGAPHD. Specifically, the paper illustrates the advantageous approach of combining molecular docking with the MFCC method.


2008 ◽  
Vol 16 (19) ◽  
pp. 8889-8895 ◽  
Author(s):  
Junia M. Pereira ◽  
Richele P. Severino ◽  
Paulo C. Vieira ◽  
João B. Fernandes ◽  
M. Fátima G.F. da Silva ◽  
...  

1997 ◽  
Vol 2 (5) ◽  
pp. 482-487 ◽  
Author(s):  
Claudio Zuniga ◽  
Teresa Palau ◽  
Pilar Penin ◽  
Carlos Gamallo ◽  
Jose Antonio de Diego

2001 ◽  
Vol 120 (5) ◽  
pp. A145-A145
Author(s):  
C CHO ◽  
Y YE ◽  
E LIU ◽  
V SHIN ◽  
N SHAM

Planta Medica ◽  
2014 ◽  
Vol 80 (16) ◽  
Author(s):  
C Quitino-da-Rocha ◽  
E Ferreira-Queiroz ◽  
C Santana-Meira ◽  
DR Magalhães-Moreira ◽  
M Botelho-Pereira-Soares ◽  
...  
Keyword(s):  

Planta Medica ◽  
2014 ◽  
Vol 80 (16) ◽  
Author(s):  
L Wang ◽  
L Shan ◽  
G Cui ◽  
Y Chen ◽  
J li ◽  
...  
Keyword(s):  

2018 ◽  
Author(s):  
Sandepan Maity ◽  
Robert Flowers

Despite the broad utility and application of SmI<sub>2</sub>in synthesis, the reagent is used in stoichiometric amounts and has a high molecular weight, resulting in a large amount of material being used for reactions requiring one or more equivalents of electrons. We report mechanistic studies on catalytic reactions of Sm(II) employing a terminal magnesium reductant and trimethyl silyl chloride in concert with a non-coordinating proton donor source. Reactions using this approach permitted reductions with as little as 1 mol% Sm. The mechanistic approach enabled catalysis employing HMPA as a ligand, facilitating the development of catalytic Sm(II) 5-<i>exo</i>-<i>trig </i>ketyl olefin cyclization reactions.


Sign in / Sign up

Export Citation Format

Share Document