Colon cancer: Cancer stem cells markers, drug resistance and treatment

2014 ◽  
Vol 68 (8) ◽  
pp. 911-916 ◽  
Author(s):  
Zuzana Kozovska ◽  
Veronika Gabrisova ◽  
Lucia Kucerova
Cell Cycle ◽  
2008 ◽  
Vol 7 (3) ◽  
pp. 309-313 ◽  
Author(s):  
Matilde Todaro ◽  
Mileidys Perez Alea ◽  
Alessandro Scopelliti ◽  
Jan Paul Medema ◽  
Giorgio Stassi

2020 ◽  
Author(s):  
Anup Kumar Singh ◽  
Ayushi Verma ◽  
Akhilesh Singh ◽  
Rakesh Kumar Arya ◽  
Shrankhla Maheshwari ◽  
...  

AbstractDrug resistance is one of the trademark features of Cancer Stem Cells (CSCs). We and others have recently shown that paucity of functional death receptors (DR4/5) on the cell surface of tumor cells is one of the major reasons for drug resistance, but their involvement in the context of in CSCs is poorly understood. By harnessing CSC specific cytotoxic function of salinomycin, we discovered a critical role of epigenetic modulator EZH2 in regulating the expression of DRs in colon CSCs. Our unbiased proteome profiler array approach followed by ChIP analysis of salinomycin treated cells indicated that the expression of DRs, especially DR4 is epigenetically repressed in colon CSCs. Concurrently, EZH2 knockdown demonstrated increased expression of DR4/DR5, significant reduction of CSC phenotype such as spheroid formation in-vitro and tumorigenic potential in-vivo in colon cancer. TCGA data analysis of human colon cancer clinical samples shows strong inverse correlation between EZH2 and DR4. Taken together, this study provides an insight about epigenetic regulation of DR4 in colon CSCs and advocates that drug resistant colon cancer can be therapeutically targeted by combining TRAIL and small molecule EZH2 inhibitors.


Author(s):  
Sara Pagotto ◽  
Maria Luisa Colorito ◽  
Annalisa Nicotra ◽  
Tiziana Apuzzo ◽  
Nicola Tinari ◽  
...  

2014 ◽  
Vol 23 (2) ◽  
pp. 161-170 ◽  
Author(s):  
Claudiu Margaritescu ◽  
Daniel Pirici ◽  
Irina Cherciu ◽  
Alexandru Barbalan ◽  
Tatiana Cârtâna ◽  
...  

Background & Aims: Colorectal cancer represents the third most common malignancy and the fourth most common cause of cancer death worldwide. The existence of drug-resistant colon cancer stem cells is thought to be one of the most important reasons behind treatment failure in colon cancer, their existence putatively leading to metastasis and recurrences. The aim of our study was to investigate the immunoexpression patterns of CD133 and CD166 in colon carcinoma, both individually and in combination, assessing their significance as prognostic markers.Methods. A total of 45 retrospective colon adenocarcinoma cases were investigated by enzymatic and multiple fluorescence immunohistochemistry for their CD133 and CD166 expression and colocalization.Results. Both CD133 and CD166 were expressed to different extents in all cancer specimens, with apredominant cytoplasmic pattern for CD133 and a more obvious membranous-like pattern for CD166.Overall, when comparing their reactivity for the tumoral tissue, CD166 expression areas seemed to be smaller than those of CD133. However, there was a direct correlation between CD133 and CD166 expression levels throughout the entire spectrum of lesions, with higher values for dysplastic lesions. Colocalization of CD133/ CD166 was obvious at the level of cells membranes, with higher coeficients in high grade dysplasia, followed by well and moderate differentiated tumours.Conclusions. CD133/CD166 colocalization is an early event occurring in colon tumorigenesis, with thehighest coeficients recorded for patients with high grade dysplasia, followed by well differentiated tumours. Thus, we consider that the coexpression of these two markers could be useful for further prognostic andtherapeutically stratification of patients with colon cancer.Abbreviations: AJCC - American Joint Committee on Cancer; CCD - charge-coupled device camera sensor; CD133 - prominin-1 (PROM1); CD166 - Activated Leukocyte Cell Adhesion Molecule (ALCAM); CRC - colorectal cancer; CSC - cancer stem cells; DAB - 3,3'-diaminobenzidine chromogen; DAPI - 4',6-diamidino- 2-phenylindole; HE - Hematoxylin and eosin staining; HGD - high grade dysplasia; HRP - horseradish peroxidase; LGD - low grade dysplasia; SDS - sodium dodecyl sulfate*Part of this work has been accepted as a poster presentation at the Digestive Disease Week (DDW) meeting, Chicago, IL, USA May 3-6, 2014


2016 ◽  
Vol 11 (5) ◽  
pp. 427-433 ◽  
Author(s):  
Lisette Potze ◽  
Simone di Franco ◽  
Jan H. Kessler ◽  
Giorgio Stassi ◽  
Jan Paul Medema

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 918
Author(s):  
Heejin Lee ◽  
Oh-Bin Kwon ◽  
Jae-Eon Lee ◽  
Yong-Hyun Jeon ◽  
Dong-Seok Lee ◽  
...  

The overall five-year survival rate for late-stage patients of ovarian cancer is below 29% due to disease recurrence and drug resistance. Cancer stem cells (CSCs) are known as a major contributor to drug resistance and recurrence. Accordingly, therapies targeting ovarian CSCs are needed to overcome the limitations of present treatments. This study evaluated the effect of trimebutine maleate (TM) targeting ovarian CSCs, using A2780-SP cells acquired by a sphere culture of A2780 epithelial ovarian cancer cells. TM is indicated as a gastrointestinal motility modulator and is known to as a peripheral opioid receptor agonist and a blocker for various channels. The GI50 of TM was approximately 0.4 µM in A2780-SP cells but over 100 µM in A2780 cells, demonstrating CSCs specific growth inhibition. TM induced G0/G1 arrest and increased the AV+/PI+ dead cell population in the A2780-SP samples. Furthermore, TM treatment significantly reduced tumor growth in A2780-SP xenograft mice. Voltage gated calcium channels (VGCC) and calcium-activated potassium channels (BKCa) were overexpressed on ovarian CSCs and targeted by TM; inhibition of both channels reduced A2780-SP cells viability. TM reduced stemness-related protein expression; this tendency was reproduced by the simultaneous inhibition of VGCC and BKCa compared to single channel inhibition. In addition, TM suppressed the Wnt/β-catenin, Notch, and Hedgehog pathways which contribute to many CSCs characteristics. Specifically, further suppression of the Wnt/β-catenin pathway by simultaneous inhibition of BKCa and VGCC is necessary for the effective and selective action of TM. Taken together, TM is a potential therapeutic drug for preventing ovarian cancer recurrence and drug resistance.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2168
Author(s):  
Balawant Kumar ◽  
Rizwan Ahmad ◽  
Swagat Sharma ◽  
Saiprasad Gowrikumar ◽  
Mark Primeaux ◽  
...  

Background: Despite recent advances in therapies, resistance to chemotherapy remains a critical problem in the clinical management of colorectal cancer (CRC). Cancer stem cells (CSCs) play a central role in therapy resistance. Thus, elimination of CSCs is crucial for effective CRC therapy; however, such strategies are limited. Autophagy promotes resistance to cancer therapy; however, whether autophagy protects CSCs to promote resistance to CRC-therapy is not well understood. Moreover, specific and potent autophagy inhibitors are warranted as clinical trials with hydroxychloroquine have not been successful. Methods: Colon cancer cells and tumoroids were used. Fluorescent reporter-based analysis of autophagy flux, spheroid and side population (SP) culture, and qPCR were done. We synthesized 36-077, a potent inhibitor of PIK3C3/VPS34 kinase, to inhibit autophagy. Combination treatments were done using 5-fluorouracil (5-FU) and 36-077. Results: The 5-FU treatment induced autophagy only in a subset of the treated colon cancer. These autophagy-enriched cells also showed increased expression of CSC markers. Co-treatment with 36-077 significantly improved efficacy of the 5-FU treatment. Mechanistic studies revealed that combination therapy inhibited GSK-3β/Wnt/β-catenin signaling to inhibit CSC population. Conclusion: Autophagy promotes resistance to CRC-therapy by specifically promoting GSK-3β/Wnt/β-catenin signaling to promote CSC survival, and 36-077, a PIK3C3/VPS34 inhibitor, helps promote efficacy of CRC therapy.


Author(s):  
Saurav Panicker ◽  
Sivaramakrishnan Venkatabalasubramanian ◽  
Surajit Pathak ◽  
Satish Ramalingam

Sign in / Sign up

Export Citation Format

Share Document