scholarly journals Repositioning Trimebutine Maleate as a Cancer Treatment Targeting Ovarian Cancer Stem Cells

Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 918
Author(s):  
Heejin Lee ◽  
Oh-Bin Kwon ◽  
Jae-Eon Lee ◽  
Yong-Hyun Jeon ◽  
Dong-Seok Lee ◽  
...  

The overall five-year survival rate for late-stage patients of ovarian cancer is below 29% due to disease recurrence and drug resistance. Cancer stem cells (CSCs) are known as a major contributor to drug resistance and recurrence. Accordingly, therapies targeting ovarian CSCs are needed to overcome the limitations of present treatments. This study evaluated the effect of trimebutine maleate (TM) targeting ovarian CSCs, using A2780-SP cells acquired by a sphere culture of A2780 epithelial ovarian cancer cells. TM is indicated as a gastrointestinal motility modulator and is known to as a peripheral opioid receptor agonist and a blocker for various channels. The GI50 of TM was approximately 0.4 µM in A2780-SP cells but over 100 µM in A2780 cells, demonstrating CSCs specific growth inhibition. TM induced G0/G1 arrest and increased the AV+/PI+ dead cell population in the A2780-SP samples. Furthermore, TM treatment significantly reduced tumor growth in A2780-SP xenograft mice. Voltage gated calcium channels (VGCC) and calcium-activated potassium channels (BKCa) were overexpressed on ovarian CSCs and targeted by TM; inhibition of both channels reduced A2780-SP cells viability. TM reduced stemness-related protein expression; this tendency was reproduced by the simultaneous inhibition of VGCC and BKCa compared to single channel inhibition. In addition, TM suppressed the Wnt/β-catenin, Notch, and Hedgehog pathways which contribute to many CSCs characteristics. Specifically, further suppression of the Wnt/β-catenin pathway by simultaneous inhibition of BKCa and VGCC is necessary for the effective and selective action of TM. Taken together, TM is a potential therapeutic drug for preventing ovarian cancer recurrence and drug resistance.

2019 ◽  
Vol 39 (3) ◽  
Author(s):  
Wenxiang Wang ◽  
Yuxia Gao ◽  
Jing Hai ◽  
Jing Yang ◽  
Shufeng Duan

Abstract Increasing evidence shows that cancer stem cells are responsible for drug resistance and relapse of tumors. In breast cancer, human epidermal growth factor receptor 2 (HER2) induces Herceptin resistance by inducing cancer stem cells. In the present study, we explored the effect of HER2 on cancer stem cells induction and drug sensitivity of ovarian cancer cell lines. First, we found that HER2 overexpression (HER2 OE) induced, while HER2 knockdown (HER2 KD) decreased CD44+/CD24− population. Consistently, HER2 expression was closely correlated with the sphere formation efficiency (SFE) of ovarian cancer cells. Second, we found that NFκB inhibition by specific inhibitor JSH23 or siRNA targetting subunit p65 dramatically impaired the induction of ovarian cancer stem cells by HER2, indicating that NFκB mediated HER2-induced ovarian cancer stem cells. Third, we found that HER2 KD significantly attenuated the tumorigenicity of ovarian cancer cells. Further, we found that HER2 inhibition increased drastically the sensitivity of ovarian cancer cells to doxorubicin (DOX) or paclitaxel (PTX). Finally, we examined the correlation between HER2 status and stem cell-related genes expression in human ovarian tumor tissues, and found that expressions of OCT4, COX2, and Nanog were higher in HER2 positive tumors than in HER2 negative tumors. Consistently, the 5-year tumor-free survival rate of HER2 positive patients was dramatically lower than HER2 negative patients. Taken together, our data indicate that HER2 decreases drug sensitivity of ovarian cancer cells via inducing stem cell-like property.


2016 ◽  
Author(s):  
Michela Lupia ◽  
Giovanni Bertalot ◽  
Pier Paolo Di Fiore ◽  
Nicoletta Colombo ◽  
Fabrizio Bianchi ◽  
...  

2016 ◽  
Vol 48 (8) ◽  
pp. e255-e255 ◽  
Author(s):  
Dae Kyoung Kim ◽  
Eun Jin Seo ◽  
Eun J Choi ◽  
Su In Lee ◽  
Yang Woo Kwon ◽  
...  

2020 ◽  
Vol 16 (11) ◽  
pp. 1612-1622
Author(s):  
Yongyi Huang ◽  
Jiajia Lin ◽  
Ying Xiong ◽  
Juan Chen ◽  
Xiling Du ◽  
...  

Human ovarian cancer stem cells (HuOCSCs) are the main source of ovarian cancer recurrence, metastasis, and drug resistance. Superparamagnetic iron oxide nanoparticles (SPIONs) are well-known nucleic acid or drug carriers owing to their controllable properties, superior stability, and easy modification. However, whether SPIONs can inhibit the activity of HuOCSCs by inducing ferroptosis remains unclear. In the present study, we isolated CD44+ /CD133+ HuOCSCs from tumours of four patients with clear cell ovarian cancer and added 0.2 mM SPIONs for mixed culture. Transmission electron microscopy showed that SPION-treated HuOCSCs contained multiple high-density electron clouds. Prussian blue staining showed high concentrations of iron ions in the cells. In vitro , SPIONs treatment of HuOCSCs inhibited cell proliferation, migration, and soft agar clone formation, weakened their resistance to multiple chemotherapeutics, and induced cell death. In vivo , SPIONs pretreatment of HuOCSCs significantly reduced their tumour-forming ability and induced angiogenesis in nude mice. Further, SPIONs induced the accumulation of reactive oxygen species in HuOCSCs and induced oxidative stress. qPCR analysis indicated that SPIONs-treated HuOCSCs had reduced expression of tumour stem cell markers (CD117, NANOG, CD133, and SOX2), cell proliferation factors (KI67, CCND), autophagy-related factors (ATG3, ATG5, MAP1ALC3a, MAP1ALC3b, and MAP1ALC3c), and certain negative regulators of ferroptosis, while the mRNA expression levels of cell death-related proteins (BAK1 and BID), and certain positive regulators of ferroptosis were significantly increased. Overall, our findings suggest that SPIONs induce oxidative stress and decrease autophagy activity in ovarian cancer stem cells, activate ferroptosis, and inhibit their proliferation, invasion, drug resistance, and tumorigenic ability.


2015 ◽  
Vol 23 ◽  
pp. S182
Author(s):  
Kamola Saydaminova ◽  
Robert Strauss ◽  
Min Xie ◽  
Charles Dreshner ◽  
Sheng Ding ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document