Suppression of no-longer relevant information in Working Memory: An alpha-power related mechanism?

2018 ◽  
Vol 135 ◽  
pp. 112-116 ◽  
Author(s):  
Claudia Poch ◽  
María Valdivia ◽  
Almudena Capilla ◽  
José Antonio Hinojosa ◽  
Pablo Campo
2020 ◽  
Vol 32 (3) ◽  
pp. 558-569 ◽  
Author(s):  
Nicole Hakim ◽  
Tobias Feldmann-Wüstefeld ◽  
Edward Awh ◽  
Edward K. Vogel

Working memory maintains information so that it can be used in complex cognitive tasks. A key challenge for this system is to maintain relevant information in the face of task-irrelevant perturbations. Across two experiments, we investigated the impact of task-irrelevant interruptions on neural representations of working memory. We recorded EEG activity in humans while they performed a working memory task. On a subset of trials, we interrupted participants with salient but task-irrelevant objects. To track the impact of these task-irrelevant interruptions on neural representations of working memory, we measured two well-characterized, temporally sensitive EEG markers that reflect active, prioritized working memory representations: the contralateral delay activity and lateralized alpha power (8–12 Hz). After interruption, we found that contralateral delay activity amplitude momentarily sustained but was gone by the end of the trial. Lateralized alpha power was immediately influenced by the interrupters but recovered by the end of the trial. This suggests that dissociable neural processes contribute to the maintenance of working memory information and that brief irrelevant onsets disrupt two distinct online aspects of working memory. In addition, we found that task expectancy modulated the timing and magnitude of how these two neural signals responded to task-irrelevant interruptions, suggesting that the brain's response to task-irrelevant interruption is shaped by task context.


2020 ◽  
Author(s):  
Nicole Hakim ◽  
Tobias Feldmann-Wüstefeld ◽  
Edward Awh ◽  
Edward K Vogel

AbstractVisual working memory (WM) must maintain relevant information, despite the constant influx of both relevant and irrelevant information. Attentional control mechanisms help determine which of this new information gets access to our capacity-limited WM system. Previous work has treated attentional control as a monolithic process–either distractors capture attention or they are suppressed. Here, we provide evidence that attentional capture may instead be broken down into at least two distinct sub-component processes: 1) spatial capture, which refers to when spatial attention shifts towards the location of irrelevant stimuli, and 2) item-based capture, which refers to when item-based WM representations of irrelevant stimuli are formed. To dissociate these two sub-component processes of attentional capture, we utilized a series of EEG components that track WM maintenance (contralateral delay activity), suppression (distractor positivity), item individuation (N2pc), and spatial attention (lateralized alpha power). We show that relevant interrupters trigger both spatial and item-based capture, which means that they undermine WM maintenance more. Irrelevant interrupters, however, only trigger spatial capture from which ongoing WM representations can recover more easily. This fractionation of attentional capture into distinct sub-component processes provides a framework by which the fate of ongoing WM processes after interruption can be explained.


2019 ◽  
Author(s):  
Nicole Hakim ◽  
Tobias Feldmann-Wüstefeld ◽  
Edward Awh ◽  
Edward K. Vogel

AbstractWorking memory maintains information so that it can be used in complex cognitive tasks. A key challenge for this system is to maintain relevant information in the face of task-irrelevant perturbations. In this series of experiments, we investigated the impact of task-irrelevant interruptions on neural representations of working memory. We recorded electroencephalogram (EEG) activity in humans while they performed a working memory task. On a subset of trials, we interrupted participants with salient, but task-irrelevant objects. To track the impact of these task-irrelevant interruptions on neural representations of working memory, we measured two well-characterized, temporally sensitive EEG markers that reflect active, prioritized working memory representations: the contralateral delay activity (CDA) and lateralized alpha power (8-12hz). Following interruption, we found that CDA momentarily sustained, but was gone by the end of the trial. Lateralized alpha power was immediately influenced by the interrupters, but recovered by the end of the trial. This suggests that dissociable neural processes contribute to the maintenance of working memory information. Additionally, we found that task expectancy modulated the timing and magnitude of how these two neural signals responded to task-irrelevant interruptions, suggesting that the brain’s response to task-irrelevant interruption is shaped by task context. The distinct time courses of and influence of task context on these two neural signatures of working memory have many interesting theoretical implications about how information is actively maintained in working memory.Significance statementWorking memory plays a central role in intelligent behaviors because it actively maintains relevant information that is easily accessible and manipulatable. In everyday life, we are often interrupted while performing such complex cognitive tasks. Therefore, understanding how working memory responds to and overcomes momentary task-irrelevant interruptions is critical for us to understand how complex cognition works. Here, we unveil how two distinct neural signatures of working memory respond to task-irrelevant interruptions by recording electroencephalogram activity in humans. Our findings raise long-standing theoretical questions about how different neural and cognitive processes contribute to the maintenance of information in working memory.


2017 ◽  
Author(s):  
Marcin Leszczynski ◽  
Juergen Fell ◽  
Ole Jensen ◽  
Nikolai Axmacher

AbstractThe electrophysiological mechanisms underlying working memory maintenance of information in the ventral and dorsal visual stream (VVS, DVS) remain elusive. Here we used electrocorticography recordings covering VVS, DVS and prefrontal cortex (PFC) in epilepsy patients while they were performing a delayed match-to-sample task. The experimental conditions (face identity, orientation) were designed to engage either the VVS or DVS. Alpha power was reduced in the VVS during maintenance of face identity and in the DVS during maintenance of spatial orientation of the very same stimuli. The phase of alpha oscillations modulated broadband high-frequency activity (BHA) in both regions. Interestingly, BHA occurred across broader alpha phase ranges when task-relevant information was maintained, putatively reflecting longer excitable “duty cycles”. Our findings support a model in which the VVS and DVS are recruited by the PFC via selective reduction of alpha power. As a result, excitable duty cycles in the relevant area are extended.


2019 ◽  
Author(s):  
Marlene Roesner ◽  
Stefan Arnau ◽  
Isabel Skiba ◽  
Edmund Wascher ◽  
Daniel Schneider

There is an ongoing debate on the contribution of target enhancement and distractor inhibition processes to selective attention. In a working memory task, we presented to-be-memorized information in a way that posterior hemispheric asymmetries in oscillatory power could be unambiguously linked to lateral target vs. distractor processing. Alpha power asymmetries (8-14 Hz) were insensitive to the number of cued or non-cued items, supporting their relation to spatial attention. Furthermore, we found an increase in alpha power contralateral to non-cued working memory content and an alpha power suppression contralateral to relevant information. These oscillatory patterns relative to the positions of cued and non-cued items were related to the participants' ability to control for the impact of irrelevant information on working memory retrieval. Based on these results, we propose that spatially specific modulations of posterior alpha power are related to accessing vs. inhibiting the spatial context of information stored in working memory.


2020 ◽  
Author(s):  
Sabrina Sghirripa ◽  
Lynton Graetz ◽  
Ashley Merkin ◽  
Nigel C Rogasch ◽  
Michael C Ridding ◽  
...  

AbstractAs working memory (WM) is limited in capacity, it is important to direct neural resources towards processing task-relevant information while ignoring distractors. Neural oscillations in the alpha frequency band (8-12 Hz) have been suggested to play a role in the inhibition of task-irrelevant information during WM, although results are mixed, possibly due to differences in the type of WM task employed. Here, we examined the role of alpha power in inhibition of anticipated distractors of varying strength using a modified Sternberg task where the encoding and retention periods were temporally separated. We recorded EEG while 20 young adults completed the task and found: 1) slower reaction times in strong distractor trials compared to weak distractor trials; 2) increased alpha power in posterior regions from baseline prior to presentation of a distractor regardless of condition; and 3) no differences in alpha power between strong and weak distractor conditions. Our results suggest that parieto-occipital alpha power is increased prior to a distractor. However we could not find evidence that alpha power is further modulated by distractor strength.


2019 ◽  
Author(s):  
Laura-Isabelle Klatt ◽  
Stephan Getzmann ◽  
Alexandra Begau ◽  
Daniel Schneider

AbstractAttention can be allocated to mental representations to select information from working memory. To date, it remains ambiguous whether such retroactive shifts of attention involve the inhibition of irrelevant information or the prioritization of relevant information. Investigating asymmetries in posterior alpha-band oscillations during an auditory retroactive cueing task, we aimed at differentiating those mechanisms. Participants were cued to attend two out of three sounds in an upcoming sound array. Importantly, the resulting working memory representation contained one laterally and one centrally presented item. A centrally presented retro-cue then indicated the lateral, the central, or both items as further relevant for the task (comparing the cued item(s) to a memory probe). Time-frequency analysis revealed opposing patterns of alpha lateralization depending on target eccentricity: A contralateral decrease in alpha power in target lateral trials indicated the involvement of target prioritization. A contralateral increase in alpha power when the central item remained relevant (distractor lateral trials) suggested the de-prioritization of irrelevant information. No lateralization was observed when both items remained relevant, supporting the notion that auditory alpha lateralization is restricted to situations in which spatial information is task-relevant. Altogether, the data demonstrate that retroactive attentional deployment involves excitatory and inhibitory control mechanisms.


2016 ◽  
Vol 30 (4) ◽  
pp. 141-154 ◽  
Author(s):  
Kira Bailey ◽  
Gregory Mlynarczyk ◽  
Robert West

Abstract. Working memory supports our ability to maintain goal-relevant information that guides cognition in the face of distraction or competing tasks. The N-back task has been widely used in cognitive neuroscience to examine the functional neuroanatomy of working memory. Fewer studies have capitalized on the temporal resolution of event-related brain potentials (ERPs) to examine the time course of neural activity in the N-back task. The primary goal of the current study was to characterize slow wave activity observed in the response-to-stimulus interval in the N-back task that may be related to maintenance of information between trials in the task. In three experiments, we examined the effects of N-back load, interference, and response accuracy on the amplitude of the P3b following stimulus onset and slow wave activity elicited in the response-to-stimulus interval. Consistent with previous research, the amplitude of the P3b decreased as N-back load increased. Slow wave activity over the frontal and posterior regions of the scalp was sensitive to N-back load and was insensitive to interference or response accuracy. Together these findings lead to the suggestion that slow wave activity observed in the response-to-stimulus interval is related to the maintenance of information between trials in the 1-back task.


2021 ◽  
Vol 11 (6) ◽  
pp. 721
Author(s):  
Russell J. Boag ◽  
Niek Stevenson ◽  
Roel van Dooren ◽  
Anne C. Trutti ◽  
Zsuzsika Sjoerds ◽  
...  

Working memory (WM)-based decision making depends on a number of cognitive control processes that control the flow of information into and out of WM and ensure that only relevant information is held active in WM’s limited-capacity store. Although necessary for successful decision making, recent work has shown that these control processes impose performance costs on both the speed and accuracy of WM-based decisions. Using the reference-back task as a benchmark measure of WM control, we conducted evidence accumulation modeling to test several competing explanations for six benchmark empirical performance costs. Costs were driven by a combination of processes, running outside of the decision stage (longer non-decision time) and showing the inhibition of the prepotent response (lower drift rates) in trials requiring WM control. Individuals also set more cautious response thresholds when expecting to update WM with new information versus maintain existing information. We discuss the promise of this approach for understanding cognitive control in WM-based decision making.


Sign in / Sign up

Export Citation Format

Share Document