Lactic acid production by mixed cultures of Kluyveromyces marxianus, Lactobacillus delbrueckii ssp. bulgaricus and Lactobacillus helveticus

2008 ◽  
Vol 99 (13) ◽  
pp. 5951-5955 ◽  
Author(s):  
S. Plessas ◽  
L. Bosnea ◽  
C. Psarianos ◽  
A.A. Koutinas ◽  
R. Marchant ◽  
...  
2004 ◽  
Vol 67 (2) ◽  
pp. 403-406 ◽  
Author(s):  
R. D. RAO ◽  
W. L. WENDORFF ◽  
K. SMITH

Whey is often stored or transported for a period of time prior to processing. During this time period, galactose and lactic acid concentrations may accumulate, reducing the quality of spray-dried whey powders in regard to stickiness and agglomeration. This study surveyed industry samples of Cheddar and mozzarella cheese whey streams to determine how galactose and lactic acid concentrations changed with storage at appropriate (4°C) and abuse (37.8°C) temperatures. Samples stored at 4°C did not exhibit significant increases in levels of lactic acid or galactose. Mozzarella whey accumulated the greatest amount of galactose and lactic acid with storage at 37.8°C. Whey samples derived from cheese made from single strains of starter culture were also evaluated to determine each culture's contribution to galactose and lactic acid production. Starter cultures evaluated included Streptococcus salivarius ssp. thermophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, Lactococcus lactis ssp. cremoris, and Lactococcus lactis ssp. lactis. Whey derived from L. helveticus accumulated a significantly greater amount of lactic acid upon storage at 37.8°C as compared with the other cultures. Galactose accumulation was significantly decreased in whey from L. lactis ssp. lactis stored at 37.8°C in comparison with the other cultures. Results from this study indicate that proper storage conditions (4°C) for whey prevent accumulation of galactose and lactic acid while the extent of accumulation during storage at 37.8°C varies depending on the culture(s) used in cheese production.


Sign in / Sign up

Export Citation Format

Share Document