Changes in Galactose and Lactic Acid Content of Sweet Whey during Storage

2004 ◽  
Vol 67 (2) ◽  
pp. 403-406 ◽  
Author(s):  
R. D. RAO ◽  
W. L. WENDORFF ◽  
K. SMITH

Whey is often stored or transported for a period of time prior to processing. During this time period, galactose and lactic acid concentrations may accumulate, reducing the quality of spray-dried whey powders in regard to stickiness and agglomeration. This study surveyed industry samples of Cheddar and mozzarella cheese whey streams to determine how galactose and lactic acid concentrations changed with storage at appropriate (4°C) and abuse (37.8°C) temperatures. Samples stored at 4°C did not exhibit significant increases in levels of lactic acid or galactose. Mozzarella whey accumulated the greatest amount of galactose and lactic acid with storage at 37.8°C. Whey samples derived from cheese made from single strains of starter culture were also evaluated to determine each culture's contribution to galactose and lactic acid production. Starter cultures evaluated included Streptococcus salivarius ssp. thermophilus, Lactobacillus helveticus, Lactobacillus delbrueckii ssp. bulgaricus, Lactococcus lactis ssp. cremoris, and Lactococcus lactis ssp. lactis. Whey derived from L. helveticus accumulated a significantly greater amount of lactic acid upon storage at 37.8°C as compared with the other cultures. Galactose accumulation was significantly decreased in whey from L. lactis ssp. lactis stored at 37.8°C in comparison with the other cultures. Results from this study indicate that proper storage conditions (4°C) for whey prevent accumulation of galactose and lactic acid while the extent of accumulation during storage at 37.8°C varies depending on the culture(s) used in cheese production.

2001 ◽  
Vol 64 (1) ◽  
pp. 81-86 ◽  
Author(s):  
A. OUMER ◽  
S. GARDE ◽  
P. GAYA ◽  
M. MEDINA ◽  
M. NUÑEZ

The effects of bacteriocins produced by six strains of lactic acid bacteria on 9 mesophilic and 11 thermophilic commercial starter cultures were investigated in mixed cultures of commercial starters with bacteriocin-producing strains in milk. The bacteriocins produced by the test organisms were nisin A, nisin Z, lacticin 481, enterocin AS-48, a novel enterocin, and a novel plantaricin. Mesophilic commercial starters were in most cases tolerant of bacteriocins, with only two of the starters being partially inhibited, one by four and the other by two bacteriocins. The aminopeptidase activities of mesophilic starters were generally low, and only one of the combinations of mesophilic starter–bacteriocin producer gave double the aminopeptidase activity of the starter culture without the bacteriocin producer. Thermophilic commercial starters were more sensitive to bacteriocins than mesophilic starters, with six thermophilic starters being partially inhibited by at least one of the bacteriocins. Their aminopeptidase activities were generally higher than those of the mesophilic starters. The aminopeptidase activities of seven thermophilic starters were increased in the presence of bacteriocins, by factors of up to 9.0 as compared with the corresponding starter cultures alone. Bacteriocin-producing strains may be used as adjunct cultures to mesophilic starters for the inhibition of pathogens in soft and semihard cheeses, because mesophilic starters are rather tolerant of bacteriocins. Bacteriocin producers may also be used as adjunct cultures to thermophilic starters of high aminopeptidase activity, more sensitive to lysis by bacteriocins than mesophilic starters, for the acceleration of ripening in semihard and hard cheeses.


2017 ◽  
Vol 10 (4) ◽  
pp. 309-318 ◽  
Author(s):  
P. Dawlal ◽  
C. Brabet ◽  
M.S. Thantsha ◽  
E.M. Buys

Maize, which contributes to a large portion of the African diet and serves as the base substrate for many fermented cereal products, has been reported to be contaminated with fumonisins. This study aimed to evaluate the in vitro ability of predominant lactic acid bacteria (LAB) in African traditional fermented maize based foods (ogi and mahewu) to bind fumonisin B1 (FB1) and B2 (FB2), as well as the stability of the complex at different pH and temperatures, in particular observed during ogi fermentation and under its storage conditions (time, temperature). The percentage of bound fumonisins was calculated after analysing the level of fumonisins not bound to LAB after a certain incubation time, by HPLC. The results revealed the ability of all tested LAB strains to bind both fumonisins, with binding efficiencies varying between strains and higher for FB2. Binding of fumonisins increased with a decrease in pH from 6 to 4 (observed during the ogi fermentation process) and from 4 to 2 (acidic pH in the stomach), and an increase in temperature (from 30 to 37 °C). The percentage of FB1 and FB2 bound to LAB at pH 4 decreased after 6 days of storage at 30 °C for all LAB strains, except for Lactobacillus plantarum (R1096) for which it increased. Lactobacillus species (L. plantarum and Lactobacillus delbrueckii) were the most efficient in binding FB1 and FB2, whereas Pediococcus sp. was less efficient. Therefore, the Lactobacillus strains tested in this study can be recommended as potential starter cultures for African traditional fermented maize based foods having detoxifying and probiotic properties.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Fortune Akabanda ◽  
James Owusu-Kwarteng ◽  
Kwaku Tano-Debrah ◽  
Charles Parkouda ◽  
Lene Jespersen

Nunu, a spontaneously fermented yoghurt-like product, is produced and consumed in parts of West Africa. A total of 373 predominant lactic acid bacteria (LAB) previously isolated and identified fromNunuproduct were assessedin vitrofor their technological properties (acidification, exopolysaccharides production, lipolysis, proteolysis and antimicrobial activities). Following the determination of technological properties,Lactobacillus fermentum22-16,Lactobacillus plantarum8-2,Lactobacillus helveticus22-7, andLeuconostoc mesenteroides14-11 were used as single and combined starter cultures forNunufermentation. Starter culture fermentedNunusamples were assessed for amino acids profile and rate of acidification and were subsequently evaluated for consumer acceptability. For acidification properties, 82%, 59%, 34%, and 20% of strains belonging toLactobacillus helveticus, L. plantarum, L. fermentum, andLeu. mesenteriodes, respectively, demonstrated fast acidification properties. High proteolytic activity (>100 to 150 μg/mL) was observed for 50%Leu. mesenteroides,40%L. fermentum,41%L. helveticus, 27%L. plantarum,and 10%Ent. faeciumspecies. In starter culture fermentedNunusamples, all amino acids determined were detected inNunufermented with single starters ofL. plantarumandL. helveticusand combined starter ofL. fermntumandL. helveticus. Consumer sensory analysis showed varying degrees of acceptability forNunufermented with the different starter cultures.


Foods ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 596 ◽  
Author(s):  
Nadia de L. Agüero ◽  
Laureano S. Frizzo ◽  
Arthur C. Ouwehand ◽  
Gonzalo Aleu ◽  
Marcelo R. Rosmini

The objective of this study was to investigate probiotic microorganisms for use as starter cultures in dry fermented sausages production. A total of eight strains were studied evaluating technological and safety characteristics including the ability to grow, lactic acid production, gas formation, catalase activity, nitrate reductase activity, proteolytic activity, lipolytic activity, hydrogen peroxide production, salt tolerance, performance at low temperatures, decarboxylation of amino acids and antimicrobial activity against pathogens associated with the product. Lactobacillus rhamnosus R0011, L. rhamnosus Lr-32, Lactobacillus paracasei Lpc-37, Lactobacillus casei Shirota and Enterococcus faecium MXVK29 were good candidates for use as fermented sausages starters cultures because they showed the best technological and safety properties since they did not demonstrate amino acid decarboxylation but showed antimicrobial activity against Listeria monocytogenes, Escherichia coli, Salmonella Dublin and Staphylococcus aureus. L. rhamnosus Lr-32 was the strain best tolerating the levels of salt, nitrate and low pH during the simulated stages of fermentation and ripening of sausage. The strain was thus the most promising of the tested probiotics as sausage starter culture. The findings warrant studies in a meat matrix, such as that of raw-cured sausage, to evaluate the effects of L. rhamnosus Lr-32 under actual conditions.


2020 ◽  
Vol 9 (1) ◽  
pp. 65
Author(s):  
Stefano Nebbia ◽  
Cristina Lamberti ◽  
Giuliana Lo Bianco ◽  
Simona Cirrincione ◽  
Valerie Laroute ◽  
...  

Lactic acid bacteria (LAB) potential in the food industry and in the biotechnological sector is a well-established interest. LAB potential in counteracting especially food-borne infections has received growing attention, but despite being a road full of promises is yet poorly explored. Furthermore, the ability of LAB to produce antimicrobial compounds, both by ribosomal synthesis and by decrypting them from proteins, is of high value when considering the growing impact of multidrug resistant strains. The antimicrobial potential of 14 food-derived lactic acid bacteria strains has been investigated in this study. Among them, four strains were able to counteract Listeria monocytogenes growth: Lactococcus lactis SN12 and L. lactis SN17 by high lactic acid production, whereas L. lactis 41FLL3 and Lactobacillus sakei I151 by Nisin Z and Sakacin P production, respectively. Strains Lactococcus lactis MG1363, Lactobacillus rhamnosus 17D10 and Lactobacillus helveticus 4D5 were tested and selected for their potential attitude to hydrolyze caseins. All the strains were able to release bioactive peptides with already known antimicrobial, antihypertensive and opioid activities. These features render these strains or their bioactive molecules suitable for use in food as biocontrol agents, or as nutraceutical supplements to treat mild disorders such as moderate hypertension and children insomnia. These results highlight once again that LAB potential in ensuring food safety, food nutraceutical value and ultimately in favoring human health is still underexplored and underexploited.


2002 ◽  
Vol 57 (9-10) ◽  
pp. 805-810 ◽  
Author(s):  
Ginka I. Frengova ◽  
Emilina D. Simova ◽  
Dora M. Beshkova ◽  
Zhelyasko I. Simov

A Lactobacillus delbrueckii subsp. bulgaricus HP1 strain with high exopolysaccharide activity was selected from among 40 strains of lactic acid bacteria, isolated from kefir grains. By associating the Lactobacillus delbrueckii subsp. bulgaricus HP1 strain with Streptococcus thermophilus T15, Lactococcus lactis subsp. lactis C15, Lactobacillus helveticus MP12. and Sacharomyces cerevisiae A13, a kefir starter was formed. The associated cultivation of the lactobacteria and yeast had a positive effect on the exopolysaccharide activity of Lactobacillus delbrueckii subsp. bulgaricus HP1. The maximum exopolysaccharide concentration of the starter culture exceeded the one by the Lactobacillus delbrueckii subsp. bulgaricus HP1 monoculture by approximately 1.7 times, and the time needed to reach the maximum concentration (824.3 mg exopolysacharides/l) was shortened by 6 h. The monomer composition of the exopolysaccharides from the kefir starter culture was represented by glucose and galactose in a 1.0:0.94 ratio, which proves that the polymer synthesized is kefiran.


2020 ◽  
Vol 29 (12) ◽  
pp. 59-63
Author(s):  
O.I. Parakhina ◽  
◽  
M.N. Lokachuk ◽  
L.I. Kuznetsova ◽  
E.N. Pavlovskaya ◽  
...  

The research was carried out within the framework of the theme of state assignment № 0593–2019–0008 «To develop theoretical foundations for creating composite mixtures for bakery products using physical methods of exposure that ensure homogeneity, stability of mixtures and bioavailability of nutrients, to optimize diets population of Russia». The data on the species belonging of new strains of lactic acid bacteria and yeast isolated from samples of good quality gluten-free starter cultures are presented. A comparative assessment of the antagonistic and acid-forming activity of strains of lactic acid bacteria and the fermentative activity of yeast was carried out. The composition of microbial compositions from selected strains of LAB and yeast was developed. The influence of the starter culture on the new microbial composition on the physicochemical, organoleptic indicators of the bread quality and resistance to mold and ropy-disease was investigated.


1995 ◽  
Vol 58 (1) ◽  
pp. 62-69 ◽  
Author(s):  
K. ANJAN REDDY ◽  
ELMER H. MARTH

Three different split lots of Cheddar cheese curd were prepared with added sodium chloride (NaCl) potassium chloride (KCl) or mixtures of NaCl/KCl (2:1 1:1 1:2 and 3:4 all on wt/wt basis) to achieve a final salt concentration of 1.5 or 1.75%. At intervals during ripening at 3±1°C samples were plated with All-Purpose Tween (APT) and Lactobacillus Selection (LBS) agar. Isolates were obtained of bacteria that predominated on the agar media. In the first trial (Lactococcus lactis subsp. lactis plus L. lactis subsp. cremoris served as starter cultures) L. lactis subsp.lactis Lactobacillus casei and other lactobacilli were the predominant bacteria regardless of the salting treatment Received by the cheese. In the second trial (L. lactis subsp. lactis served as the starter culture) unclassified lactococci L. lactis subsp. lactis unclassified lactobacilli and L. casei predominated regardless of the salting treatment given the cheese. In the third trial (L. lactis subsp. cremoris served as the starter culture) unclassified lactococci unclassified lactobacilli L. casei and Pediococcus cerevisiae predominated regardless of the salting treatment applied to the cheese Thus use of KCl to replace some of the NaCl for salting cheese had no detectable effect on the kinds of lactic acid bacteria that developed in ripening Cheddar cheese.


Sign in / Sign up

Export Citation Format

Share Document