Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell

2009 ◽  
Vol 100 (13) ◽  
pp. 3252-3260 ◽  
Author(s):  
Aba Aldrovandi ◽  
Enrico Marsili ◽  
Loredana Stante ◽  
Patrizia Paganin ◽  
Silvia Tabacchioni ◽  
...  
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jian-sheng Huang ◽  
Ping Yang ◽  
Chong-ming Li ◽  
Yong Guo ◽  
Bo Lai ◽  
...  

In order to study the effect of nitrite and nitrate on the performance of microbial fuel cell, a system combining an anaerobic fluidized bed (AFB) and a microbial fuel cell (MFC) was employed for high-strength nitrogen-containing synthetic wastewater treatment. Before this study, the AFB-MFC had been used to treat high-strength organic wastewater for about one year in a continuous flow mode. The results showed that when the concentrations of nitrite nitrogen and nitrate nitrogen were increased from 1700 mg/L to 4045 mg/L and 545 mg/L to 1427 mg/L, respectively, the nitrite nitrogen and nitrate nitrogen removal efficiencies were both above 99%; the COD removal efficiency went up from 60.00% to 88.95%; the voltage was about 375 ± 15 mV while the power density was at 70 ± 5 mW/m2. However, when the concentrations of nitrite nitrogen and nitrate nitrogen were above 4045 mg/L and 1427 mg/L, respectively, the removal of nitrite nitrogen, nitrate nitrogen, COD, voltage, and power density were decreased to be 86%, 88%, 77%, 180 mV, and 17 mW/m2 when nitrite nitrogen and nitrate nitrogen were increased to 4265 mg/L and 1661 mg/L. In addition, the composition of biogas generated in the anode chamber was analyzed by a gas chromatograph. Nitrogen gas, methane, and carbon dioxide were obtained. The results indicated that denitrification happened in anode chamber.


2013 ◽  
Vol 2 (2) ◽  
pp. 131-135
Author(s):  
Z Yavari ◽  
H Izanloo ◽  
K Naddafi ◽  
H.R Tashauoei ◽  
M Khazaei

Renewable energy will have an important role as a resource of energy in the future. Microbial fuel cell (MFC) is a promising method to obtain electricity from organic matter andwastewater treatment simultaneously. In a pilot study, use of microbial fuel cell for wastewater treatment and electricity generation investigated. The bacteria of ruminant used as inoculums. Synthetic wastewater used at different organic loading rate. Hydraulic retention time was aneffective factor in removal of soluble COD and more than 49% removed. Optimized HRT to achieve the maximum removal efficiency and sustainable operation could be regarded 1.5 and 2.5 hours. Columbic efficiency (CE) affected by organic loading rate (OLR) and by increasing OLR, CE reduced from 71% to 8%. Maximum voltage was 700mV. Since the microbial fuel cell reactor considered as an anaerobic process, it may be an appropriate alternative for wastewater treatment


2015 ◽  
Vol 2 (9) ◽  
pp. 1307-1313 ◽  
Author(s):  
Xiao-Bo Gong ◽  
Shi-Jie You ◽  
Yuan Yuan ◽  
Jin-Na Zhang ◽  
Kai Sun ◽  
...  

2018 ◽  
Vol 118 ◽  
pp. 92-101 ◽  
Author(s):  
Debajyoti Bose ◽  
Himanshi Dhawan ◽  
Vaibhaw Kandpal ◽  
Parthasarthy Vijay ◽  
Margavelu Gopinath

Sign in / Sign up

Export Citation Format

Share Document