scholarly journals Effect of Nitrite and Nitrate Concentrations on the Performance of AFB-MFC Enriched with High-Strength Synthetic Wastewater

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jian-sheng Huang ◽  
Ping Yang ◽  
Chong-ming Li ◽  
Yong Guo ◽  
Bo Lai ◽  
...  

In order to study the effect of nitrite and nitrate on the performance of microbial fuel cell, a system combining an anaerobic fluidized bed (AFB) and a microbial fuel cell (MFC) was employed for high-strength nitrogen-containing synthetic wastewater treatment. Before this study, the AFB-MFC had been used to treat high-strength organic wastewater for about one year in a continuous flow mode. The results showed that when the concentrations of nitrite nitrogen and nitrate nitrogen were increased from 1700 mg/L to 4045 mg/L and 545 mg/L to 1427 mg/L, respectively, the nitrite nitrogen and nitrate nitrogen removal efficiencies were both above 99%; the COD removal efficiency went up from 60.00% to 88.95%; the voltage was about 375 ± 15 mV while the power density was at 70 ± 5 mW/m2. However, when the concentrations of nitrite nitrogen and nitrate nitrogen were above 4045 mg/L and 1427 mg/L, respectively, the removal of nitrite nitrogen, nitrate nitrogen, COD, voltage, and power density were decreased to be 86%, 88%, 77%, 180 mV, and 17 mW/m2 when nitrite nitrogen and nitrate nitrogen were increased to 4265 mg/L and 1661 mg/L. In addition, the composition of biogas generated in the anode chamber was analyzed by a gas chromatograph. Nitrogen gas, methane, and carbon dioxide were obtained. The results indicated that denitrification happened in anode chamber.

2013 ◽  
Vol 69 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Jian-sheng Huang ◽  
Yong Guo ◽  
Ping Yang ◽  
Chong-ming Li ◽  
Hui Gao ◽  
...  

In order to study the performance and bacterial communities of an anaerobic fluidized bed microbial fuel cell (AFB-MFC) system, the 16S rDNA gene sequencing was applied, and high-strength synthetic wastewater was treated by the AFB-MFC system. The high-strength synthetic wastewater, in which the concentrations of chemical oxygen demand (COD), nitrite nitrogen, and nitrate nitrogen were above 19,000, 2,516–3,871 and 927–1,427 mg/L, was treated by the AFB-MFC system. The removal efficiency of COD, nitrite nitrogen, and nitrate nitrogen reached 70–89, 98 and 98%, while the maximum voltage was 394 mV. The bacteria analysis revealed the presence of Alistipes putredinis, Carnobacterium sp., Victivallis vadensis, Klebsiella pneumoniae, Thauera sp., Parabacteroides merdae, Parvimonas micra, Parabacteroides sp., and Desulfomicrobium baculatum in the anode chamber. In addition, the Klebsiella pneumoniae was observed to have the capability of organic degradation and electricity generation, while the Thauera sp. has the capability of denitrification.


Author(s):  
Jie Yang ◽  
Sasan Ghobadian ◽  
Reza Montazami ◽  
Nastaran Hashemi

Microbial fuel cell (MFC) technology is a promising area in the field of renewable energy because of their capability to use the energy contained in wastewater, which has been previously an untapped source of power. Microscale MFCs are desirable for their small footprints, relatively high power density, fast start-up, and environmentally-friendly process. Microbial fuel cells employ microorganisms as the biocatalysts instead of metal catalysts, which are widely applied in conventional fuel cells. MFCs are capable of generating electricity as long as nutrition is provided. Miniature MFCs have faster power generation recovery than macroscale MFCs. Additionally, since power generation density is affected by the surface-to-volume ratio, miniature MFCs can facilitate higher power density. We have designed and fabricated a microscale microbial fuel cell with a volume of 4 μL in a polydimethylsiloxane (PDMS) chamber. The anode and cathode chambers were separated by a proton exchange membrane. Carbon cloth was used for both the anode and the cathode. Shewanella Oneidensis MR-1 was chosen to be the electrogenic bacteria and was inoculated into the anode chamber. We employed Ferricyanide as the catholyte and introduced it into the cathode chamber with a constant flow rate of approximately 50 μL/hr. We used trypticase soy broth as the bacterial nutrition and added it into the anode chamber approximately every 15 hours once current dropped to base current. Using our miniature MFC, we were able to generate a maximum current of 4.62 μA.


2011 ◽  
Vol 63 (8) ◽  
pp. 1752-1757 ◽  
Author(s):  
P. Belleville ◽  
P. J. Strong ◽  
P. H. Dare ◽  
D. J. Gapes

We describe the operation of a microbial fuel cell (MFC) system operating on a synthetic wastewater (acetic acid), under conditions of increasing nitrogen limitation. Two MFCs were operated under feed conditions which spanned a range of TKN/COD values of 1.6–28 mg/g. Stable operation was observed in all cases, even when no ammoniacal nitrogen was added to the cell. Improved electrochemical performance (measured as power density, W/m2) was observed as nitrogen limitation was imposed on the cells. Even with no ammonium addition, continuous function of the cell was maintained, at levels consistent with operation at balanced nutrient supplementation. The work has implicated biological nitrogen fixation as a potential source of nitrogen within the MFC. Whilst this hypothesis has yet to be confirmed, the work highlights the opportunity for continuous operation of microbial fuel cells utilising wastewaters with extremely low nitrogen levels, present in pulp and paper, pharmaceutical and petrochemical industries. Further, the described increases in some of the electrochemical indices (e.g. power density) under application of nitrogen limitation may provide a new approach to increasing fuel cell performance. Finally, the lack of any need to add supplemental nitrogen to a MFC-based wastewater treatment technology holds potential for significant financial and environmental savings.


2012 ◽  
Vol 16 (07n08) ◽  
pp. 917-926 ◽  
Author(s):  
Sean L. Edwards ◽  
Ronen Fogel ◽  
Kudzai Mtambanengwe ◽  
Chamunorwa Togo ◽  
Richard Laubscher ◽  
...  

Pioneering work by Nyokong and others have highlighted the potential benefits for improved electron transfer processes and catalysis of hybrid configurations of metallophthalocyanines with carbon nanotubes. Here we examine the practical application of such hybrid configurations in an Enterobacter cloacae microbial fuel cell. Electrochemical investigations at glassy carbon electrodes (GCEs) showed that FePc and FePc :multiwalled carbon nanotube (MWCNT) hybrid surface modifications display significant oxygen reduction reaction electrocatalytic properties compared to either MWCNT-modified or bare GCE surfaces throughout acidic- to moderately-alkaline pHs. Significant stabilization of the current response at FePc :MWCNT surfaces are notable throughout the pH range, compared to GCE surfaces modified with FePc alone. Corresponding results were obtained for surface modifications of bare carbon paper (BCP) cathodes in a microbial fuel cell where power density increases were observed in the order: Pt > FePc :MWCNT > FePc > MWCNT > BCP. A synergistic combination of simple treatments such as increased ionic strength (300 mM NaCl ), temperature (35 °C), and agitation of the anode chamber in this MFC configuration increased the power density to 2.5 times greater than that achieved at platinised cathode configurations under non-optimised conditions, achieving peak power densities of 212 mW.m-2. The long-term stability of the MFC was assessed over 55 days. Surprisingly, the majority of signal loss over extended MFC operation was attributed, in this study, to fouling of the Nafion® PEM membrane rather than either leaching/fouling of the catalysts from the electrodes or nutrient depletion in the anode over the time periods examined.


2008 ◽  
Vol 58 (1) ◽  
pp. 37-43 ◽  
Author(s):  
M. M. Ghangrekar ◽  
V. B. Shinde

Long term performance of mediator-less and membrane-less microbial fuel cell (ML-MFC) was evaluated for treatment of synthetic and actual sewage and electricity harvesting. The anode chamber of ML-MFC was inoculated with pre-heated mixed anaerobic sludge collected from a septic tank. The ML-MFC was operated by feeding synthetic wastewater for first 244 days, under different organic loading rates, and later with actual sewage for next 30 days. Maximum chemical oxygen demand (COD) removal efficiency of 91.4% and 82.7% was achieved while treating synthetic wastewater and actual sewage, respectively. Maximum current of 0.33 mA and 0.17 mA was produced during synthetic and actual sewage treatment, respectively. Maximum power density of 6.73 mW/m2 (13.65 mW/m3) and maximum current density of 70.74 mA/m2 was obtained in this membrane-less MFC with successful organic matter removal from wastewater.


2013 ◽  
Vol 2 (2) ◽  
pp. 131-135
Author(s):  
Z Yavari ◽  
H Izanloo ◽  
K Naddafi ◽  
H.R Tashauoei ◽  
M Khazaei

Renewable energy will have an important role as a resource of energy in the future. Microbial fuel cell (MFC) is a promising method to obtain electricity from organic matter andwastewater treatment simultaneously. In a pilot study, use of microbial fuel cell for wastewater treatment and electricity generation investigated. The bacteria of ruminant used as inoculums. Synthetic wastewater used at different organic loading rate. Hydraulic retention time was aneffective factor in removal of soluble COD and more than 49% removed. Optimized HRT to achieve the maximum removal efficiency and sustainable operation could be regarded 1.5 and 2.5 hours. Columbic efficiency (CE) affected by organic loading rate (OLR) and by increasing OLR, CE reduced from 71% to 8%. Maximum voltage was 700mV. Since the microbial fuel cell reactor considered as an anaerobic process, it may be an appropriate alternative for wastewater treatment


2020 ◽  
Vol 44 (7) ◽  
pp. 5968-5976 ◽  
Author(s):  
Meshack I. Simeon ◽  
Felix U. Asoiro ◽  
Mohamad Aliyu ◽  
Olayinka A. Raji ◽  
Ruth Freitag

Sign in / Sign up

Export Citation Format

Share Document