Batch and continuous biogas production arising from feed varying in rice straw volumes following pre-treatment with extrusion

2015 ◽  
Vol 180 ◽  
pp. 154-161 ◽  
Author(s):  
S. Menardo ◽  
V. Cacciatore ◽  
P. Balsari
BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 8862-8882
Author(s):  
Enhai Liu ◽  
Baozhong Zhu ◽  
Shengyong Liu ◽  
Hailong Yu ◽  
Zhiping Zhang ◽  
...  

Based on the literature on the degradation mechanism and the change of micro-functional groups in the fermentation process of modified rice straw, this study aimed to solve the problems of low biogas production rate and poor stability of the biogas production system. In this work, mathematical equations were developed and combined with duck dung and rice straw mixed raw material to perform a fermentation test. The molecular micro-functional group changes of cellulose, hemicellulose, and lignin were studied to obtain the optimal ratio of mixed raw materials for fermentation and to explore the optimization mechanism of its fermentation biogas production. Experimental results showed that the optimal ratio of mixed raw materials was 2.8:1, and the inclusion of a suitable amount of Mn2+(concentration of 2 mol × L-1) was able to strengthen MnP activity and improve the ability of white-rot fungi to rupture β-O-4 bonds. A modification pre-treatment via activated carbon-based solid acid was performed, and the experimental group generated 15.8% more cumulative biogas than the control group. The biogas yield reached its peak when 300 g of inoculum was added to the pre-treatment at a concentration of 30%.


2021 ◽  
pp. 100716
Author(s):  
Deisi Cristina Tápparo ◽  
Daniela Cândido ◽  
Ricardo Luis Radis Steinmetz ◽  
Christian Etzkorn ◽  
André Cestonaro do Amaral ◽  
...  

2013 ◽  
Vol 67 (9) ◽  
Author(s):  
Karina Michalska ◽  
Stanisław Ledakowicz

AbstractThis work studies the influence of the alkali pre-treatment of Sorghum Moench — a representative of energy crops used in biogas production. Solutions containing various concentrations of sodium hydroxide were used to achieve the highest degradation of lignocellulosic structures. The results obtained after chemical pre-treatment indicate that the use of NaOH leads to the removal of almost all lignin (over 99 % in the case of 5 mass % NaOH) from the biomass, which is a prerequisite for efficient anaerobic digestion. Several parameters, such as chemical oxygen demand, total organic carbon, total phenolic content, volatile fatty acids, and general nitrogen were determined in the hydrolysates thus obtained in order to define the most favourable conditions. The best results were obtained for the Sorghum treated with 5 mass % NaOH at 121°C for 30 min The hydrolysate thus achieved consisted of high total phenolic compounds concentration (ca. 4.7 g L−1) and chemical oxygen demand value (ca. 45 g L−1). Although single alkali hydrolysis causes total degradation of glucose, a combined chemical and enzymatic pre-treatment of Sorghum leads to the release of large amounts of this monosaccharide into the supernatant. This indicates that alkali pre-treatment does not lead to complete cellulose destruction. The high degradation of lignin structure in the first step of the pre-treatment rendered the remainder of the biomass available for enzymatic action. A comparison of the efficiency of biogas production from untreated Sorghum and Sorghum treated with the use of NaOH and enzymes shows that chemical hydrolysis improves the anaerobic digestion effectiveness and the combined pre-treatment could have great potential for methane generation.


2017 ◽  
Vol 6 (1) ◽  
pp. 61-67
Author(s):  
Iqbal Syaichurrozi

The purpose of this research was to analyze the biogas production from co-digestion of Salvinia molesta and rice straw. Ratio of Salvinia molesta and rice straw was 5:0, 4:1, 3:2. Lab-scale-batch digesters (600 mL) were operated at room temperature (30 oC) and pressure of 1 atm. Total basis of Salvinia molesta and rice straw was 10 gr, water was added with ratio of organic matter:water = 1:7 (w/w), rumen fluid was added as inoculum, initial pH was adjusted to be 7. Fermentation process was conducted for 30 days. The results showed that total biogas volume for ratio of 5:0, 4:1, 3:2 was 6.300.00; 32.7618.32; 107.5418.51 mL/g VS respectively. The pH of substrate was changing from 7.00 to 6.770.19; 6.600.14; 6.730.09 for all variables respectively.


2013 ◽  
pp. 85-103 ◽  
Author(s):  
Günther Bochmann ◽  
Lucy F.R. Montgomery

2018 ◽  
Vol 65 ◽  
pp. 05025 ◽  
Author(s):  
Sagor Kumar Pramanik ◽  
Fatihah Binti Suja ◽  
Biplob Kumar Pramanik ◽  
Shahrom Bindi Md Zain

Solid organic wastes create potential risks to environmental pollution and human health due to the uncontrolled discharge of huge quantities of hazardous wastes from numerous sources. Now-a-days, anaerobic digestion (AD) is considered as a verified and effective alternative compared to other techniques for treating solid organic waste. The paper reviewed the biological process and parameters involved in the AD along with the factors could enhance the AD process. Hydrolysis is considered as a rate-limiting phase in the complex AD process. The performance and stability of AD process is highly influenced by various operating parameters like temperature, pH, carbon and nitrogen ratio, retention time, and organic loading rate. Different pre-treatment (e.g. mechanical, chemical and biological) could enhance the AD process and the biogas yield. Co-digestion can also be used to provide suitable nutrient balance inside the digester. Challenges of the anaerobic digestion for biogas production are also discussed.


Sign in / Sign up

Export Citation Format

Share Document