Biodegradation mechanism of biogas production by modified rice straw fermentation

BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 8862-8882
Author(s):  
Enhai Liu ◽  
Baozhong Zhu ◽  
Shengyong Liu ◽  
Hailong Yu ◽  
Zhiping Zhang ◽  
...  

Based on the literature on the degradation mechanism and the change of micro-functional groups in the fermentation process of modified rice straw, this study aimed to solve the problems of low biogas production rate and poor stability of the biogas production system. In this work, mathematical equations were developed and combined with duck dung and rice straw mixed raw material to perform a fermentation test. The molecular micro-functional group changes of cellulose, hemicellulose, and lignin were studied to obtain the optimal ratio of mixed raw materials for fermentation and to explore the optimization mechanism of its fermentation biogas production. Experimental results showed that the optimal ratio of mixed raw materials was 2.8:1, and the inclusion of a suitable amount of Mn2+(concentration of 2 mol × L-1) was able to strengthen MnP activity and improve the ability of white-rot fungi to rupture β-O-4 bonds. A modification pre-treatment via activated carbon-based solid acid was performed, and the experimental group generated 15.8% more cumulative biogas than the control group. The biogas yield reached its peak when 300 g of inoculum was added to the pre-treatment at a concentration of 30%.

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2843
Author(s):  
Krystyna Zielińska ◽  
Agata Fabiszewska ◽  
Katarzyna Piasecka-Jóźwiak ◽  
Renata Choińska

A new direction in the use of lactic acid bacteria inoculants is their application for renewable raw materials ensiling for biogas production. The aim of the study was to demonstrate the possibility of stimulating the synthesis of propionic acid in the process of co-fermentation of selected strains of Lactobacillus buchneri and L. diolivorans as well as L. buchneri and Pediococcus acidilactici. L. buchneri KKP 2047p and P. acidilactici KKP 2065p were characterized by the special capabilities for both synthesis and metabolism of 1,2-propanediol. L. diolivorans KKP 2057p stands out for the ability to metabolize 1,2-propanediol to propionic acid. As a result of the co-fermentation a concentration of propionic acid was obtained at least 1.5 times higher in the final stage of culture in comparison to cultivating individual species of bacteria separately. The results of in vitro experiments were applied in agricultural practice, by application of two lactic acid bacteria inoculants in ensiling of grass silage and improving its suitability for biogas production. Grass silages made with the addition of the inoculant were characterized by the content of 1,2-propanediol, 1-propanol and propionic acid ensured extension of the aerobic stability from 4 to 7 days in comparison to untreated silages. It was found that the use of both inoculants resulted in an approximately 10 - 30% increase in biogas yield from this raw material.


2013 ◽  
Vol 675 ◽  
pp. 374-378
Author(s):  
Bin Yang ◽  
Fa Gen Yang ◽  
Wu Di Zhang ◽  
Fang Yin ◽  
Xing Ling Zhao ◽  
...  

In order to gain biogas production potential and energy conversion efficiency of biogas fermentation of sorghum distilled residue (SDR), the anaerobic batch fermentation experiments were performed at 30 degrees Celsius. After experiments, we got experimental results as follows: biogas production of SDR during total fermentation time of 28days is 2885mL; properties of raw materials including: TS is 88.58%, VS is 16.69%, heating value is 15.684kJ/g, TS biogas yield is 220mL/g, VS biogas yield is 1300ml/g, raw material biogas yield is 190mL/g, and energy conversion efficiency of biogas fermentation of SDR is 30.38%. The results indicate that biogas fermentation is an effective new method to recycle clean energy from SDR.


2018 ◽  
Vol 25 (3) ◽  
pp. 395-404 ◽  
Author(s):  
Ilona Wrońska ◽  
Krystyna Cybulska

Abstract One of the methods for recovery and utilization of waste products from the poultry industry is to subject them to the methane fermentation process in the biogas plant. These are waste with a high content of fatty compounds and proteins, including keratin. Their specificity is characterized by rapid possibility of spoilage, rancidity and problems of further management. These wastes are characterized by varying degrees of complexity, thus their use as a raw material for the biogas fermenter should be preceded by a pre-treatment. An example of waste generated in poultry processing is biological sludge. Optimizing this material with highly enzymatic fungi could accelerate the degradation of the organic matter contained and, as a result, increase the energy efficiency of this type of waste. Quantitative and qualitative parameters of biogas produced from biological sludge processed by isolated filamentous fungi with high metabolic potential were determined. Laboratory tests were based on the modified methodology included in the standards DIN 38414-S8 and VDI 4630. Based on the results obtained, it was found that the pre-optimization of biological sludge by fungal strains with different metabolic potential, influences on the yield of biogas production, including methane. There was an increase in the biogas yield from the biological sludge processed by the mixed fungal consortium (by 20 %) and the strain marked as F1 (by 14 %) as compared to the non-inoculated material, which was also reflected in the amount of methane produced in the case of the mixed fungal consortium (by 28 %) and the strain marked as F1 (by 12 %).


Author(s):  
Sergejs Osipovs ◽  
Aleksandrs Pučkins ◽  
Mihails Pupiņš ◽  
Jeļena Kirilova ◽  
Juris Soms

The research summarizes information on biochemical processes of biogas production and the parameters that affect the results of its production. The research examines the result of obtaining biogas from bog sludge and a mixture of crushed reed. Particular attention is given to temperature, as a parameter that affects the results of methane and biogas production.The yield of biogas and methane during the bioprocess depends on the effect of temperature. During the experiment, 2.78 L of biogas with an average methane content of 38.7% was obtained from a mixture of bog sludge and crushed reeds. If the content of organic compounds in the sludge was higher, the biogas yield would increase during the process. It is more advantageous to use the raw material mixture for biogas production. 


Fisheries ◽  
2020 ◽  
Vol 2020 (2) ◽  
pp. 113-117
Author(s):  
Olga Mezenova ◽  
Vladimir Wolkov ◽  
Larisa Baydalinova ◽  
Natalia Mezenova ◽  
Svetlana Agafonova ◽  
...  

The authors study three fractions obtained as a result of hydrolysis of smoked sprat heads (under temperature of 130oC and presser of 0.25 MPa) – fat, protein water-soluble, and protein-and-mineral ones. Waste from sprat production of two fish canning complexes of the Kaliningrad Region - “RosCon” and “Kolkhoz for the Motherland” - was used as raw material. Hydrolysis was carried out in an aqueous medium in two ways - with preliminary separation of fat and without this operation. The protein fraction was sublimated and its quantitative and qualitative indices were examined - mass yield, solubility, chemical composition and molecular fractional composition of the obtained peptide fractions were determined. The output of sublimated protein fractions is practically independent of the type of raw material and the method of pre-treatment and is 6.47.9% of the mass of raw materials. The chemical composition of protein fractions varies widely in terms of fat (1.4–8.3%), minerals (9.8–13.4%) and proteins (72.1–80.2%). The solubility of the peptide fractions ranged from 91-98%. The molecular weight assessment results showed a high content of a low molecular weight fraction of peptides with an MM of less than 10 kDa in all experimental samples (about 38%). This indicates a high digestibility and biological value of the obtained peptide compositions. Sublimated peptide compositions had typical organoleptic characteristics, pleasant aroma and taste of smoked fish. Ключевые


2018 ◽  
Vol 65 ◽  
pp. 05025 ◽  
Author(s):  
Sagor Kumar Pramanik ◽  
Fatihah Binti Suja ◽  
Biplob Kumar Pramanik ◽  
Shahrom Bindi Md Zain

Solid organic wastes create potential risks to environmental pollution and human health due to the uncontrolled discharge of huge quantities of hazardous wastes from numerous sources. Now-a-days, anaerobic digestion (AD) is considered as a verified and effective alternative compared to other techniques for treating solid organic waste. The paper reviewed the biological process and parameters involved in the AD along with the factors could enhance the AD process. Hydrolysis is considered as a rate-limiting phase in the complex AD process. The performance and stability of AD process is highly influenced by various operating parameters like temperature, pH, carbon and nitrogen ratio, retention time, and organic loading rate. Different pre-treatment (e.g. mechanical, chemical and biological) could enhance the AD process and the biogas yield. Co-digestion can also be used to provide suitable nutrient balance inside the digester. Challenges of the anaerobic digestion for biogas production are also discussed.


2019 ◽  
Vol 965 ◽  
pp. 117-123
Author(s):  
Igor Lapenda Wiesberg ◽  
José Luiz de Medeiros ◽  
Ofélia de Queiroz Fernandes Araújo

Chemical conversion of carbon dioxide (CO2) to methanol has the potential to address two relevant sustainability issues: economically feasible replacement of fossil raw materials and avoidance of greenhouse gas emissions. However, chemical stability of CO2 is a challenging impediment to conversion, requiring harsh reaction conditions at the expense of increased energy input, adding capital, operational and environmental costs. This work evaluates two innovative chemical conversion of CO2 to methanol: the indirect conversion, which uses synthesis gas produced by bi-reforming as intermediate, and the direct conversion, via hydrogenation. Process simulations are used to obtain mass and energy balances, needed to support economic analyses. Due to the uncertainties in the raw material prices, including CO2 and hydrogen (H2), its limits for economic viability are estimated and sensitivity analyzes are carried in predetermined prices (base cases). It is considered the scenario of free CO2 available in atmospheric conditions, as in a bioethanol industry, but the sensitivity analyses show the results for other scenarios, as in a CO2 rich natural gas, in which the cost of processing CO2 is zero. The economic analyses show that hydrogenation can be feasible if hydrogen prices are lower than 1000 US$/t, while the indirect route is viable only for cheap sources of natural gas below 3.7 US$/MMBtu. The CO2 pre-treatment costs are not as sensible as the others raw materials.


2011 ◽  
Vol 183-185 ◽  
pp. 411-416
Author(s):  
Xi Qin Wang ◽  
Zheng Wen Huang ◽  
Bo Yu ◽  
Jian Qiang Zhang

As an industrial organic solid waste, oil residue, with wide sources and low price, but could not find an effective way to use currently. In addition, with the development of mushroom industry and rising price of traditional raw-materials, it is very necessary to find the substitute raw material to reduce production cost of mushroom cultivation. This study attempts to produce the strains of Flammulina velutipes by taking use of oil residue to replace part of the traditional raw material, there are two groups in the experiment: the test group is adding 5%, 10%, 15%, 20%, 40% of the oil residue to replace the culture medium of cottonseed hull and wheat bran; the control group is the traditional culture medium, then comparatively observed the growth of the mycelium. The results showed that it can promote the growth of the mycelium and shorten the cycle of seed production to add the oil residue in the test. But the growth rate of mycelium will be hindered when the concentration exceeds a certain range.The optimal culture medium to add the oil residue is as follows: 15% of the oil residue, 64% cottonseed hull, 20% coarse wood chips, 0% wheat bran , 1% lime. Oil residue contains a lot of the nutritional components to benefit the growth of edible fungi, and without the heavy metal pollution, can replace the culture medium of cottonseed hull and wheat bran and other traditional materials, reduce cost of production the strains, a fair-sized economic efficiency can be received, the environment can be protected.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Nazar Tkach ◽  
◽  
Tetiana Mirzoieva ◽  

The article presents a study on the justification of the economic feasibility of processing cereals into biogas. Аt the first stage the sown areas and productivity of separate agricultural crops in the investigated enterprises of Brovarsky district, Kyiv region were analyzed. The tendency to increase the yield of agricultural crops in the studied enterprises was revealed. This was seen as evidence that they could potentially be fully self-sufficient in raw materials for the production of gaseous biofuels. At the second stage of the study, the potential volume of the raw material base for biogas production in the studied enterprises was calculated, potential volume of biogas production and economically feasible volume of biogas production for each enterprise. It is proposed to use part of the grown grain for bioenergy production, and this part should be 10-15% of the gross harvest of grain enterprises in order to prevent the food crisis in the country. At the third stage of the study to determine the economic efficiency of biogas production from wheat and corn, investment costs were calculated, necessary for the implementation of the project to install a biogas plant in the studied enterprises. The authors calculated the investment costs required to implement the project of installing a biogas plant at the studied enterprises. The authors also analyzed the costs of each company for future projects. Finally, the economic efficiency of the proposed project for biogas production in the studied enterprises of Brovary district, Kyiv region is calculated, the economic efficiency of the project in the long run is analyzed with the use of discounted indicators of economic efficiency with a life cycle of 5 years. It was found that the implementation of projects for biogas production may be accompanied by high efficiency, all enterprises will receive profits from the implementation of investment projects for the production of biogas and biofertilizers with the subsequent sale of biogas and the use of biofertilizers for their own needs.


2018 ◽  
Vol 12 (1) ◽  
Author(s):  
I. Bilenka ◽  
Ya. Golinskaya ◽  
N. Dzyuba ◽  
H. Martirosian

In the work, various technological methods are presented of preliminary processing of celery and parsnip roots to prevent their darkening during cooking in restaurants. These methods are: immersing in a citric acid solution (c = 0.05 %, 0.1 %, 0.15 %), in solution NaCl (c = 0. 5%, 1 %, 2 %), and microwave processing in various modes. The activity of peroxidase, polyphenol oxidase, and ascorbate oxidase enzymes of root crops in the varietal section is also determined. Fresh white roots were selected as research objects: celery of the varieties Yablucnyy and Diamant, and parsnip of the varieties Student and Kruhlyy. It was revealed that polyphenol oxidase shows the highest activity. In order to inactivate the above-stated oxidoreductase, different methods of treating white roots were compared, too. The lowest oxidative enzymes activity was characteristic of the roots of the Diamant varieties and the parsnip roots of the Student variety, which were selected for further work. Studies have been carried out on changes in the mass fraction of L-ascorbic acid during steam blasting and microwave processing in different modes. It is proved that the treatment of white roots with ultra high frequency irradiation at 650 W for 1 minute is optimal. Such treatment allowes preventing the darkening of the raw material after its peeling due to the action of oxidation-reducing enzymes. It also allows preserving L-ascorbic acid by 64.6 % and 65.0 % in the roots of celery and parsnip, respectively. The distribution of polyphenol oxidase activity in the celery and parsnip root crop is analyzed. The results of the work can be used in preparation of dishes with the use of white roots in restaurants in order to improve technological techniques during processing of raw materials into finished products, improve its quality, and preserve L-ascorbic acid, as well as expand the range of culinary products based on spicy aromatic raw materials.


Sign in / Sign up

Export Citation Format

Share Document