scholarly journals Determination of volumetric gas–liquid mass transfer coefficient of carbon monoxide in a batch cultivation system using kinetic simulations

2017 ◽  
Vol 239 ◽  
pp. 387-393 ◽  
Author(s):  
Nulee Jang ◽  
Muhammad Yasin ◽  
Shinyoung Park ◽  
Robert W. Lovitt ◽  
In Seop Chang
Fluids ◽  
2018 ◽  
Vol 3 (1) ◽  
pp. 18 ◽  
Author(s):  
German Cortes Garcia ◽  
Kevin van Eeten ◽  
Michiel de Beer ◽  
Jaap Schouten ◽  
John van der Schaaf

2008 ◽  
Vol 137 (2) ◽  
pp. 422-427 ◽  
Author(s):  
Rocío Maceiras ◽  
Sebastião S. Alves ◽  
M. Ángeles Cancela ◽  
Estrella Álvarez

Author(s):  
Predrag Kojic ◽  
Jovana Kojic ◽  
Milada Pezo ◽  
Jelena Krulj ◽  
Lato Pezo ◽  
...  

The objective of this study was to investigate the hydrodynamics and the gas-liquid mass transfer coefficient of an external-loop airlift reactor (ELAR). The ELAR was operated in three cases: different inlet velocities of fluids, different alcohols solutions (water, 0.5% methanol, 0.5% ethanol, 0.5% propanol and 0.5% butanol) and different concentration of methanol in solutions (0%, 0.5%, 1%, 2% and 5%). The influence of superficial gas velocity and various diluted alcohol solutions on hydrodynamics and gas-liquid mass transfer coefficient of the ELAR was studied. Experimentally, the gas hold-up, liquid velocities and volumetric mass transfer coefficient values in the riser and the downcomer were obtained from the literature source. A computational fluid dynamics (CFD) model was developed, based on two-phase flow, investigating different liquids regarding surface tension, assuming the ideal gas flow, applying the finite volume method and Eulerian-Eulerian model. The volumetric mass transfer coefficient was determined using CFD model, as well as artificial neural network model. The effects of liquid parameters and gas velocity on the characteristics of the gas-liquid mass transfer were simulated. These models were compared with appropriate experimental results. CFD model successfully succeed to simulate the influence of different alcohols regarding the number of C-atoms on hydrodynamics and mass transfer.


2015 ◽  
Vol 69 (5) ◽  
pp. 553-559 ◽  
Author(s):  
Milica Djekovic-Sevic ◽  
Nevenka Boskovic-Vragolovic ◽  
Ljiljana Takic ◽  
Radmila Garic-Grulovic ◽  
Srdjan Pejanovic

Experimental investigation of gas-liquid mass transfer of ozone in water, in bubble column with two-fluid nozzle gas distributor (BKDM), under different operating conditions, are presented in this work. The main objective was to determine the ozone volumetric mass transfer coefficient, kL a, in calm uniform section of the column, under different values of gas and liquid flow rates. Obtained values of these coefficients were compared with the values in countercurrent bubble column. The critical liquid flowrate, when gas hold up reaches its maximum, was experimentally determined. It was shown that the maximum value of the ozone volumetric mass transfer coefficient is obtained just when liquid flowrate is at its critical value.


Sign in / Sign up

Export Citation Format

Share Document