scholarly journals Determination of the ozone volumetric mass transfer coefficient in bubble column with two-fluid nozzle gas distributor

2015 ◽  
Vol 69 (5) ◽  
pp. 553-559 ◽  
Author(s):  
Milica Djekovic-Sevic ◽  
Nevenka Boskovic-Vragolovic ◽  
Ljiljana Takic ◽  
Radmila Garic-Grulovic ◽  
Srdjan Pejanovic

Experimental investigation of gas-liquid mass transfer of ozone in water, in bubble column with two-fluid nozzle gas distributor (BKDM), under different operating conditions, are presented in this work. The main objective was to determine the ozone volumetric mass transfer coefficient, kL a, in calm uniform section of the column, under different values of gas and liquid flow rates. Obtained values of these coefficients were compared with the values in countercurrent bubble column. The critical liquid flowrate, when gas hold up reaches its maximum, was experimentally determined. It was shown that the maximum value of the ozone volumetric mass transfer coefficient is obtained just when liquid flowrate is at its critical value.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Li Chaoyue ◽  
Feng Shiyu ◽  
Xu Lei ◽  
Peng Xiaotian ◽  
Yan Yan

AbstractDissolved oxygen evolving from aviation fuel leads to an increase in the oxygen concentration in an inert aircraft fuel tank ullage that may increase the flammability of the tank. Aviation fuel scrubbing with nitrogen-enriched air (NEA) can largely reduce the amount of dissolved oxygen and counteract the adverse effect of oxygen evolution. The gas–liquid mass transfer characteristics of aviation fuel scrubbing are investigated using the computational fluid dynamics method, which is verified experimentally. The effects of the NEA bubble diameter, NEA superficial velocity and fuel load on oxygen transfer between NEA and aviation fuel are discussed. Findings from this work indicate that the descent rate of the average dissolved oxygen concentration, gas holdup distribution and volumetric mass transfer coefficient increase with increasing NEA superficial velocity but decrease with increasing bubble diameter and fuel load. When the bubble diameter varies from 1 to 4 mm, the maximum change of descent rate of dissolved oxygen concentration is 18.46%, the gas holdup is 8.73%, the oxygen volumetric mass transfer coefficient is 81.45%. When the NEA superficial velocities varies from 0.04 to 0.10 m/s, the maximum change of descent rate of dissolved oxygen concentration is 146.77%, the gas holdup is 77.14%, the oxygen volumetric mass transfer coefficient is 175.38%. When the fuel load varies from 35 to 80%, the maximum change of descent rate of dissolved oxygen concentration is 21.15%, the gas holdup is 49.54%, the oxygen volumetric mass transfer coefficient is 44.57%. These results provide a better understanding of the gas and liquid mass transfer characteristics of aviation fuel scrubbing in aircraft fuel tanks and can promote the optimal design of fuel scrubbing inerting systems.


Author(s):  
Predrag Kojic ◽  
Jovana Kojic ◽  
Milada Pezo ◽  
Jelena Krulj ◽  
Lato Pezo ◽  
...  

The objective of this study was to investigate the hydrodynamics and the gas-liquid mass transfer coefficient of an external-loop airlift reactor (ELAR). The ELAR was operated in three cases: different inlet velocities of fluids, different alcohols solutions (water, 0.5% methanol, 0.5% ethanol, 0.5% propanol and 0.5% butanol) and different concentration of methanol in solutions (0%, 0.5%, 1%, 2% and 5%). The influence of superficial gas velocity and various diluted alcohol solutions on hydrodynamics and gas-liquid mass transfer coefficient of the ELAR was studied. Experimentally, the gas hold-up, liquid velocities and volumetric mass transfer coefficient values in the riser and the downcomer were obtained from the literature source. A computational fluid dynamics (CFD) model was developed, based on two-phase flow, investigating different liquids regarding surface tension, assuming the ideal gas flow, applying the finite volume method and Eulerian-Eulerian model. The volumetric mass transfer coefficient was determined using CFD model, as well as artificial neural network model. The effects of liquid parameters and gas velocity on the characteristics of the gas-liquid mass transfer were simulated. These models were compared with appropriate experimental results. CFD model successfully succeed to simulate the influence of different alcohols regarding the number of C-atoms on hydrodynamics and mass transfer.


Author(s):  
Keshav C Ruthiya ◽  
John van der Schaaf ◽  
Ben F.M. Kuster ◽  
Jaap C Schouten

In this paper, the influence of carbon and silica particle slurry concentration up to 20 g/l (4 vol%) on regime transition, gas hold-up, and volumetric mass transfer coefficient is studied in a 2-dimensional slurry bubble column. From high speed video image analysis, the average large bubble diameter, the frequency of occurrence of large bubbles, the gas-liquid interfacial area, and the large bubble hold-up are obtained. The liquid side mass transfer coefficient is calculated from the volumetric mass transfer coefficient and the gas-liquid interfacial area. The lyophilic silica particles are rendered lyophobic by a methylation process to study the influence of particle wettability. The influence of organic electrolyte (sodium gluconate) and the combination of electrolyte and particles is also studied. It is found that lyophilic silica, lyophobic silica, and lyophobic carbon particles at concentrations larger than 2 g/l (0.4 vol%) decrease the gas hold-up and shift the regime transition point (where the first large bubbles appear) to a lower gas velocity. The volumetric mass transfer coefficient increases with gas velocity, increases with electrolyte concentration, decreases with slurry concentration, and is higher for lyophobic particles. The liquid side mass transfer coefficient increases with gas velocity, bubble diameter, and is higher for lyophobic particles. A correlation for the mass transfer coefficient based on dimensionless numbers is proposed for the heterogeneous regime.


2021 ◽  
Vol 333 ◽  
pp. 04002
Author(s):  
Shun Takano ◽  
Ryosuke Ezure ◽  
Yusuke Takahashi ◽  
Hiroyuki Komatsu ◽  
Kazuaki Yamagiwa ◽  
...  

Hydrated-based gas separation is a method capable of selectively separating and recovering greenhouse gases. Although a conventional hydrate-based gas separation apparatus is a batch or a semi-batch system, continuous operation is preferable to increase the throughput of gas without changing the apparatus volume. Recently, we proposed a flow type apparatus to allow continuous operation of hydrate formation (absorption) and subsequent decomposition (desorption). The aim of this study is to investigate the mass transfer characteristics of the continuous apparatus using the HFC134a-N2 mixed gas system. The volumetric mass transfer coefficient was calculated especially during a steady state of gas absorption. Besides, we compared mass transfer performance between the hydrate-based gas absorber and a conventional bubble column. Sodium dodecyl sulfate was used as a hydrate dispersant. In the flow type apparatus, the gas-liquid contact was good and the hydrate slurry state was observed during hydrate formation. In the surfactant solution, the volumetric mass transfer coefficient increased in comparison with that in water. The volumetric mass transfer coefficient with hydrate was higher than that of the bubble column. These results suggest that hydrate formation improves gas absorption performance.


Sign in / Sign up

Export Citation Format

Share Document