Predicting hydrodynamic parameters and volumetric gas–liquid mass transfer coefficient in an external-loop airlift reactor by support vector regression

2017 ◽  
Vol 125 ◽  
pp. 398-407 ◽  
Author(s):  
Predrag Kojić ◽  
Radovan Omorjan
Author(s):  
Predrag Kojic ◽  
Jovana Kojic ◽  
Milada Pezo ◽  
Jelena Krulj ◽  
Lato Pezo ◽  
...  

The objective of this study was to investigate the hydrodynamics and the gas-liquid mass transfer coefficient of an external-loop airlift reactor (ELAR). The ELAR was operated in three cases: different inlet velocities of fluids, different alcohols solutions (water, 0.5% methanol, 0.5% ethanol, 0.5% propanol and 0.5% butanol) and different concentration of methanol in solutions (0%, 0.5%, 1%, 2% and 5%). The influence of superficial gas velocity and various diluted alcohol solutions on hydrodynamics and gas-liquid mass transfer coefficient of the ELAR was studied. Experimentally, the gas hold-up, liquid velocities and volumetric mass transfer coefficient values in the riser and the downcomer were obtained from the literature source. A computational fluid dynamics (CFD) model was developed, based on two-phase flow, investigating different liquids regarding surface tension, assuming the ideal gas flow, applying the finite volume method and Eulerian-Eulerian model. The volumetric mass transfer coefficient was determined using CFD model, as well as artificial neural network model. The effects of liquid parameters and gas velocity on the characteristics of the gas-liquid mass transfer were simulated. These models were compared with appropriate experimental results. CFD model successfully succeed to simulate the influence of different alcohols regarding the number of C-atoms on hydrodynamics and mass transfer.


2016 ◽  
Vol 22 (3) ◽  
pp. 275-284 ◽  
Author(s):  
Predrag Kojic ◽  
Ivana Sijacki ◽  
Natasa Lukic ◽  
Dragica Jovicevic ◽  
Svetlana Popovic ◽  
...  

The effects of the inserted membrane in the downcomer of an external-loop airlift reactor, the gas sparger type (single orifice and sinter plate) and added alcohol (ethanol, n-butanol, or n-hexanol) on the volumetric gas-liquid mass transfer coefficient (kLa) were studied. Due to the presence of the membrane in the downcomer, kLa did not change significantly; the differences were smaller than 10%. The highest values of the kLa were obtained using the sinter plate. It was found that the addition of small amounts of alcohol increased the mass transfer. Using our experimental results and the data of other authors, the feed-forward back propagation neural network for prediction of kLa in external-loop airlift reactors with alcohol solutions was proposed.


Author(s):  
Yanling Tang ◽  
Gang Luo ◽  
Zhenmin Cheng

Packing size effects on the fluid dynamics in an external-loop packed bubble column with Raschig rings of three different effective diameters (5, 14 and 41 mm) in the riser were investigated. The overall gas holdup, liquid circulating velocity and gas-liquid mass transfer coefficient were respectively measured by volume expansion method, tracer-response method and dynamic oxygen-absorption technique. CFD simulation with the Euler-Euler two-fluid method was used to predict the liquid circulating velocity by treating the packing as a porous medium. Compared to the empty column, the gas holdup was found to increase with the presence of packing, however, the liquid circulating velocity and gas-liquid mass transfer coefficient may increase or decrease. Specifically, the gas holdup increases with the decrease of packing size, while the liquid circulating velocity is on the contrary, which induces the maximal gas-liquid mass transfer rate at packing diameter of 14 mm.


2008 ◽  
Vol 137 (2) ◽  
pp. 422-427 ◽  
Author(s):  
Rocío Maceiras ◽  
Sebastião S. Alves ◽  
M. Ángeles Cancela ◽  
Estrella Álvarez

2016 ◽  
Vol 73 (8) ◽  
pp. 1969-1977 ◽  
Author(s):  
Kangning Yao ◽  
Yong Chi ◽  
Fei Wang ◽  
Jianhua Yan ◽  
Mingjiang Ni ◽  
...  

A commonly used aeration device at present has the disadvantages of low mass transfer rate because the generated bubbles are several millimeters in diameter which are much bigger than microbubbles. Therefore, the effect of a microbubble on gas-liquid mass transfer and wastewater treatment process was investigated. To evaluate the effect of each bubble type, the volumetric mass transfer coefficients for microbubbles and conventional bubbles were determined. The volumetric mass transfer coefficient was 0.02905 s−1 and 0.02191 s−1 at a gas flow rate of 0.67 L min−1 in tap water for microbubbles and conventional bubbles, respectively. The degradation rate of simulated municipal wastewater was also investigated, using aerobic activated sludge and ozone. Compared with the conventional bubble generator, the chemical oxygen demand (COD) removal rate was 2.04, 5.9, 3.26 times higher than those of the conventional bubble contactor at the same initial COD concentration of COD 200 mg L−1, 400 mg L−1, and 600 mg L−1, while aerobic activated sludge was used. For the ozonation process, the rate of COD removal using microbubble generator was 2.38, 2.51, 2.89 times of those of the conventional bubble generator. Based on the results, the effect of initial COD concentration on the specific COD degradation rate were discussed in different systems. Thus, the results revealed that microbubbles could enhance mass transfer in wastewater treatment and be an effective method to improve the degradation of wastewater.


Sign in / Sign up

Export Citation Format

Share Document