scholarly journals Autotrophic nitrogen removal characteristics of PN-anammox process enhanced by sulfur autotrophic denitrification under mainstream conditions

2020 ◽  
Vol 316 ◽  
pp. 123926
Author(s):  
Yan Yuan ◽  
Xiang Li ◽  
Bo-lin Li
2010 ◽  
Vol 113-116 ◽  
pp. 662-665
Author(s):  
Wen De Tian ◽  
Kyoung Jin An ◽  
Zhi Wei Li

This study focused on the feasibility of autotrophic nitrogen removal to treat high ammonia leachate, using combined partial Nitritation and Anammox process. In partial nitritation reactor, the optimal operation condition was found with influent ammonium concentration of 1200 mg/L, DO about 3 mg/L, HRT 3 days and temperature about 31°C at the ratio of NO2-N / NH4-N effluent kept at 1.1, which is a prerequisite for the application of Anammox. In Anammox reactor, more than 85% ammonium is removed at HRT 8 days, temperature 28±1°C, and pH 8. The removal rate of nitrogen and COD in combined partial Nitritation and Anammox process are 90% and 74%, respectively. Thus, a combined process of partial nitritation and a subsequent Anammox could be an alternative solution for ammonium removal for leachate.


2006 ◽  
Vol 53 (4-5) ◽  
pp. 533-540 ◽  
Author(s):  
S.W.H. Van Hulle ◽  
U. Zaher ◽  
G. Schelstraete ◽  
P.A. Vanrolleghem

Fully autotrophic nitrogen removal processes, such as the combined SHARON-Anammox process, help to improve the sustainability of wastewater treatment. Successful operation of such a completely autotrophic system is, among others, based on the strict control of the SHARON reactor in order to produce an Anammox-suited influent with a 1:1 ammonium:nitrite ratio. The high quality and high frequency measurements provided by a titrimetric set-up measuring the total ammonium (TAN) and total nitrite (TNO2) concentrations facilitate this control considerably. In this study, the use of a titrimetric set-up for monitoring the combined SHARON-Anammox process is investigated. The technique that interprets on-line collected titration curves was applied to a lab-scale system. Comparison with classic colorimetric results gave statistically indistinguishable results for TAN and TNO2 concentrations in the SHARON reactor. In the Anammox reactor, only TAN could be determined by the investigated method due to the very low TNO2 concentrations. Phosphate, a potential inhibitor of the Anammox process, is available as an additional measurement in the effluent of the SHARON reactor. Three measurements are thus combined in one single instrument. The proposed measuring technique holds different advantages over the other TAN and TNO2 measurement techniques such as on-site availability, easy automation, the absence of the need for high dilutions and cost reduction.


2014 ◽  
Vol 69 (10) ◽  
pp. 2079-2084 ◽  
Author(s):  
J. A. Sánchez Guillén ◽  
Y. Yimman ◽  
C. M. Lopez Vazquez ◽  
D. Brdjanovic ◽  
J. B. van Lier

To assess the feasibility of the Anammox process as a cost-effective post-treatment step for anaerobic sewage treatment, the simultaneous effects of organic carbon source, chemical oxygen demand (COD)/N ratio, and temperature on autotrophic nitrogen removal was studied. In batch experiments, three operating conditions were evaluated at 14, 22 and 30 °C, and at COD/N ratios of 2 and 6. For each operating condition, containing 32 ± 2 mg NH4+-N/L and 25 ± 2 mg NO2−-N/L, three different substrate combinations were tested to simulate the presence of readily biodegradable and slowly biodegradable organic matter (RBCOD and SBCOD, respectively): (i) acetate (RBCOD); (ii) starch (SBCOD); and (iii) acetate + starch. The observed stoichiometric NO2−-N/NH4+-N conversion ratios were in the range of 1.19–1.43, and the single or simultaneous presence of acetate and starch did not affect the Anammox metabolism. High Anammox nitrogen removal was observed at 22 °C (77–84%) and 30 °C (73–79%), whereas there was no nitrogen removal at 14 °C; the Anammox activity was strongly influenced by temperature, in spite of the COD source and COD/N ratios applied. These results suggest that the Anammox process could be applied as a nitrogen removal post-treatment for anaerobic sewage systems in warm climates.


Sign in / Sign up

Export Citation Format

Share Document