Manipulating denitrifying sulfide removal of Pseudomonas sp. C27 with nitrite as sole nitrogen source: Shotgun proteomics analysis

2020 ◽  
Vol 318 ◽  
pp. 124074
Author(s):  
Hongliang Guo ◽  
Chuan Chen ◽  
Duu-Jong Lee
2015 ◽  
Vol 180 ◽  
pp. 381-385 ◽  
Author(s):  
Hongliang Guo ◽  
Chuan Chen ◽  
Duu-Jong Lee ◽  
Aijie Wang ◽  
Nanqi Ren

2003 ◽  
Vol 69 (6) ◽  
pp. 3653-3657 ◽  
Author(s):  
Isaac Fruchey ◽  
Nir Shapir ◽  
Michael J. Sadowsky ◽  
Lawrence P. Wackett

ABSTRACT Cyanuric acid hydrolase (AtzD) from Pseudomonas sp. strain ADP was purified to homogeneity. Of 22 cyclic amides and triazine compounds tested, only cyanuric acid and N-methylisocyanuric acid were substrates. Other cyclic amidases were found not to hydrolyze cyanuric acid. Ten bacteria that use cyanuric acid as a sole nitrogen source for growth were found to contain either atzD or trzD, but not both genes.


1953 ◽  
Vol 31 (1) ◽  
pp. 28-32 ◽  
Author(s):  
A. C. Blackwood

One hundred and fourteen bacterial cultures representing most of the species in the Bacillus genus were tested for the production of extracellular barley gum cytase. Assays were made on shake-flask cultures grown on a medium containing glucose and yeast extract. Although all the organisms had some enzymatic activity, certain strains of Bacillus subtilis gave the best yields of cytase. On a medium with asparagine as the sole nitrogen source even higher yields were obtained. The crude cytase preparations were stable and after freeze-drying most of the original activity remained.


2010 ◽  
Vol 76 (12) ◽  
pp. 4102-4104 ◽  
Author(s):  
Yin Chen ◽  
Kathryn L. McAleer ◽  
J. Colin Murrell

ABSTRACT Monomethylamine can be used by nonmethylotrophs as a sole nitrogen source but not as a carbon source; however, little is known about the genes and enzymes involved. The γ-glutamylmethylamide/N-methylglutamate pathway for monomethylamine utilization by methylotrophs has recently been resolved. We have identified genes encoding key enzymes of this pathway in nonmethylotrophs (e.g., Agrobacterium tumefaciens) and demonstrated that this pathway is also involved in the utilization of monomethylamine as a nitrogen source by nonmethylotrophs.


PLoS ONE ◽  
2012 ◽  
Vol 7 (6) ◽  
pp. e39494 ◽  
Author(s):  
Jiaping Song ◽  
Renjie Sun ◽  
Dazhi Li ◽  
Fengji Tan ◽  
Xin Li ◽  
...  

1975 ◽  
Vol 25 (2) ◽  
pp. 119-135 ◽  
Author(s):  
Meryl Polkinghorne ◽  
M. J. Hynes

SUMMARYWild-type strains ofAspergillus nidulansgrow poorly onL-histidine as a sole nitrogen source. The synthesis of the enzyme histidase (EC. 4.3.1.3) appears to be a limiting factor in the growth of the wild type, as strains carrying the mutantareA102 allele have elevated histidase levels and grow strongly on histidine as a sole nitrogen source.L-Histidine is an extremely weak sole carbon source for all strains.Ammonium repression has an important role in the regulation of histidase synthesis and the relief of ammonium repression is dependent on the availability of a good carbon source. The level of histidase synthesis does not respond to the addition of exogenous substrate.Mutants carrying lesions in thesarA orsarB loci (suppressor ofareA102) have been isolated. The growth properties of these mutants on histidine as a sole nitrogen source correlate with the levels of histidase synthesized. Mutation at thesarA andsarB loci also reduces the utilization of a number of other nitrogen sources. The data suggest that these two genes may code for regulatory products involved in nitrogen catabolism. No histidase structural gene mutants were identified and possible explanations of this are discussed.


Sign in / Sign up

Export Citation Format

Share Document