Role of extracellular polymeric substances and enhanced performance for biological removal of carbonaceous organic matters and ammonia from wastewater with high salinity and low nutrient concentrations

2021 ◽  
Vol 326 ◽  
pp. 124764
Author(s):  
Wenchang Tang ◽  
Mengjie Wu ◽  
Wei Lou ◽  
Chunping Yang
Author(s):  
Jingwen Pan ◽  
Baoyu Gao ◽  
Pijun Duan ◽  
Kangying Guo ◽  
Muhammad Akram ◽  
...  

Nonradical pathway-based persulfate oxidation technology is considered to be a promising method for high-salinity organic wastewater treatment.


2013 ◽  
Vol 777 ◽  
pp. 326-329
Author(s):  
Tao Li Song ◽  
Xue Nong Yi ◽  
Zhi Qing Li ◽  
Xin Jin

Experiments were conducted to study the role of enhanced micro-electrolysis techniques (METs) in treatment of s-atrazine wastewater, regarding atrazine production wastewater as the object of this research. The intensified METs methods included O3and ultrasound (US). With O3METs technology, a better result could be achieved under weak acidity condition. The highest removal rate of TOC reached 18.7%. US before METs could gain higher removal rate of 38.7% compared to the rate of 27.8% by US in METs.


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 824
Author(s):  
Fredy P. Carrera ◽  
Carlos Noceda ◽  
María G. Maridueña-Zavala ◽  
Juan M. Cevallos-Cevallos

Metabolomics is a technology that generates large amounts of data and contributes to obtaining wide and integral explanations of the biochemical state of a living organism. Plants are continuously affected by abiotic stresses such as water scarcity, high temperatures and high salinity, and metabolomics has the potential for elucidating the response-to-stress mechanisms and develop resistance strategies in affected cultivars. This review describes the characteristics of each of the stages of metabolomic studies in plants and the role of metabolomics in the characterization of the response of various plant species to abiotic stresses.


2017 ◽  
Vol 3 (8) ◽  
pp. e1602047 ◽  
Author(s):  
Michael A. Ochsenkühn ◽  
Till Röthig ◽  
Cecilia D’Angelo ◽  
Jörg Wiedenmann ◽  
Christian R. Voolstra
Keyword(s):  

Author(s):  
Sung-Wong Hwang ◽  
Dong-Il Seo ◽  
Ju-Duk Yoon ◽  
Jeong-Hui Kim ◽  
Sang-Hyeon Park ◽  
...  

2001 ◽  
Vol 1 ◽  
pp. 605-614 ◽  
Author(s):  
J.H. Janse ◽  
W. Ligtvoet ◽  
S. Van Tol ◽  
A.H.M. Bresser

Shallow lakes respond in different ways to changes in nutrient loading (nitrogen, phosphorus). These lakes may be in two different states: turbid, dominated by phytoplankton, and clear, dominated by submerged macrophytes. Both states are self-stabilizing; a shift from turbid to clear occurs at much lower nutrient loading than a shift in the opposite direction. These critical loading levels vary among lakes and are dependent on morphological, biological, and lake management factors. This paper focuses on the role of wetland zones. Several processes are important: transport and settling of suspended solids, denitrification, nutrient uptake by marsh vegetation (increasing nutrient retention), and improvement of habitat conditions for predatory fish. A conceptual model of a lake with surrounding reed marsh was made, including these relations. The lake-part of this model consists of an existing lake model named PCLake[1]. The relative area of lake and marsh can be varied. Model calculations revealed that nutrient concentrations are lowered by the presence of a marsh area, and that the critical loading level for a shift to clear water is increased. This happens only if the mixing rate of the lake and marsh water is adequate. In general, the relative marsh area should be quite large in order to have a substantial effect. Export of nutrients can be enhanced by harvesting of reed vegetation. Optimal predatory fish stock contributes to water quality improvement, but only if combined with favourable loading and physical conditions. Within limits, the presence of a wetland zone around lakes may thus increase the ability of lakes to cope with nutrients and enhance restoration. Validation of the conclusions in real lakes is recommended, a task hampered by the fact that, in the Netherlands, many wetland zones have disappeared in the past.


2021 ◽  
Vol 12 ◽  
Author(s):  
Brandi Cron ◽  
Jennifer L. Macalady ◽  
Julie Cosmidis

This work shines light on the role of extracellular polymeric substance (EPS) in the formation and preservation of elemental sulfur biominerals produced by sulfur-oxidizing bacteria. We characterized elemental sulfur particles produced within a Sulfurovum-rich biofilm in the Frasassi Cave System (Italy). The particles adopt spherical and bipyramidal morphologies, and display both stable (α-S8) and metastable (β-S8) crystal structures. Elemental sulfur is embedded within a dense matrix of EPS, and the particles are surrounded by organic envelopes rich in amide and carboxylic groups. Organic encapsulation and the presence of metastable crystal structures are consistent with elemental sulfur organomineralization, i.e., the formation and stabilization of elemental sulfur in the presence of organics, a mechanism that has previously been observed in laboratory studies. This research provides new evidence for the important role of microbial EPS in mineral formation in the environment. We hypothesize that the extracellular organics are used by sulfur-oxidizing bacteria for the stabilization of elemental sulfur minerals outside of the cell wall as a store of chemical energy. The stabilization of energy sources (in the form of a solid electron acceptor) in biofilms is a potential new role for microbial EPS that requires further investigation.


PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0139703 ◽  
Author(s):  
Hongguang Yu ◽  
Zhiwei Wang ◽  
Zhichao Wu ◽  
Chaowei Zhu

Sign in / Sign up

Export Citation Format

Share Document