Microbial nitrogen removal in synthetic aquaculture wastewater by Fixed-bed baffled reactors packed with different biofilm carrier materials

2021 ◽  
pp. 125045
Author(s):  
Rui Wang ◽  
Qiang Xu ◽  
Chunlei Chen ◽  
Xinkai Li ◽  
Chunfang Zhang ◽  
...  
2016 ◽  
Vol 74 (11) ◽  
pp. 2666-2674 ◽  
Author(s):  
A. Sarti ◽  
A. W. Lamon ◽  
A. Ono ◽  
E. Foresti

This study proposes a new approach to selecting a biofilm carrier for immobilization using dissolved oxygen (DO) microsensors to measure the thickness of aerobic and anaerobic layers in biofilm. The biofilm carriers tested were polyurethane foam, mineral coal (MC), basaltic gravel, and low-density polyethylene. Development of layers in the biofilm carrier surface was evaluated using a flow cell device, and DO profiles were conducted to determine the size of the layers (aerobic and anaerobic). MC was the biofilm carrier selected due to allowing the development of larger aerobic and anaerobic layers in the biofilm (896 and 1,058 μm, respectively). This ability is supposed to improve simultaneous nitrogen removal by nitrification and denitrification biological processes. Thus, as a biofilm carrier, MC was used in a fixed-bed sequencing batch biofilm reactor (FB-SBBR) for treatment of wastewater with a high ammonia concentration (100–400 mgNH4+-N L−1). The FB-SBBR (15.0 L) was filled with matrices of the carrier and operated under alternating aeration and non-aeration periods of 6 h each. At a mean nitrogen loading rate of 0.55 ± 0.10 kgNH4+-N m−3 d−1, the reactor attained a mean nitrification efficiency of 95 ± 9% with nitrite as the main product (aerobic period). Mean denitrification efficiency during the anoxic period was 72 ± 13%.


2020 ◽  
Vol 6 (3) ◽  
pp. 767-778
Author(s):  
Ming Zeng ◽  
Junfeng Yang ◽  
Xiaofang Li ◽  
Nan Wu ◽  
Peng Pan ◽  
...  

A BSgel system was prepared by integrating the gel entrapment technique with a traditional biofilm carrier to realize the SNAD process under mainstream conditions.


Author(s):  
Qian Zhang ◽  
Xue Chen ◽  
Heng Wu ◽  
Wandong Luo ◽  
Xiangyang Liu ◽  
...  

In recent years, there is a trend of low C/N ratio in municipal domestic wastewater, which results in serious problems for nitrogen removal from wastewater. The addition of an external soluble carbon source has been the usual procedure to achieve denitrification. However, the disadvantage of this treatment process is the need of a closed, rather sophisticated and costly process control as well as the risk of overdosing. Solid-phase denitrification using biodegradable polymers as biofilm carrier and carbon source was considered as an attractive alternative for biological denitrification. The start-up time of the novel process using PCL (polycaprolactone) as biofilm carrier and carbon source was comparable with that of conventional process using ceramsite as biofilm carrier and acetate as carbon source. Further, the solid-phase denitrification process showed higher nitrogen removal efficiency under shorter hydraulic retention time (HRT) and low carbon to nitrogen (C/N) ratio since the biofilm was firmly attached to the clear pores on the surface of PCL carriers and in this process bacteria that could degrade PCL carriers to obtain electron donor for denitrification was found. In addition, solid-phase denitrification process had a stronger resistance of shock loading than that in conventional process. This study revealed, for the first time, that the physical properties of the biodegradable polymer played a vital role in denitrification, and the different microbial compositions of the two processes was the main reason for the different denitrification performances under low C/N ratio.


Sign in / Sign up

Export Citation Format

Share Document