Important effects of temperature on treating real municipal wastewater by a submerged anaerobic membrane bioreactor: removal efficiency, biogas, and microbial community

2021 ◽  
pp. 125306
Author(s):  
Jiayuan Ji ◽  
Jialing Ni ◽  
Akito Ohtsu ◽  
Naoko Isozumi ◽  
Yisong Hu ◽  
...  
Processes ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 879 ◽  
Author(s):  
Xiaolan Xiao ◽  
Wansheng Shi ◽  
Wenquan Ruan

The performance and microbial community structure for treating lipids-rich kitchen waste slurry in mesophilic Anaerobic Membrane Bioreactor (m-AnMBR) and thermophilic AnMBR (t-AnMBR) were compared in this study. Higher Organic Loading Rate (OLR) of 12 kg-COD/(m3·d), better Chemical Oxygen Demand (COD) removal efficiency over 98%, stronger stability with Volatile Fatty Acids (VFAs)/alkalinity below 0.04, higher flux with 18 L/(m2·h) and lower Long Chain Fatty Acids (LCFAs) concentration of 550 mg/L were obtained in the m-AnMBR. Directly increasing temperature from 39 to 55 °C resulted in a collapse of the t-AnMBR. Acclimation via gradually increasing temperature made the t-AnMBR run successfully with lower OLR and COD removal efficiency of 7.5 kg-COD/(m3·d) and 96%. An obvious discrepancy of microbial community structure was presented between the m-AnMBR and t-AnMBR via the 16S rRNA gene sequence analysis. The Methanomethylovorans and Methanoculleus were dominant in the t-AnMBR instead of Methanobacterium and Methanothrix in the m-AnMBR.


2017 ◽  
Vol 8 (1) ◽  
pp. 58-67 ◽  
Author(s):  
Xiaojie Mei ◽  
Zhiwei Wang ◽  
Yan Miao ◽  
Zhichao Wu

Abstract Anaerobic membrane bioreactor (AnMBR) processes are a promising method of recovering energy from municipal wastewater. In this study, a pilot-scale AnMBR with extremely short hydraulic retention time (HRT = 2.2 h) was operated at a flux of 6 L/(m2h) for 340 days without any membrane cleaning. The average value achieved for chemical oxygen demand (COD) removal was 87% and for methane yield was 0.12 L CH4/gCODremoved. Based on mass balance analysis, it was found that about 30% of total influent COD was used for methane conversion, 15% of COD for sulfate reduction, 10% for biomass growth and 10–20% of COD remained in the effluent. Microbial community analyses indicated that seasonal changes of feedwater (in terms of organic components and temperature) led to the variations of microbial community structures. Among the bacterial communities, Chloroflexi, Proteobacteria and Bacteroidetes were the three most predominant phyla. In the archaeal consortia, WCHA1-57 and Methanobacterium surpassed Methanosaeta and Methanolinea to become the predominant methanogens during the long-term operation of short HRT. The sulfate-reducing bacteria, accounting for less than 2% of total abundance of bacteria, might not be the dominant competitor against methanogens.


Sign in / Sign up

Export Citation Format

Share Document