alcohol ethoxylates
Recently Published Documents


TOTAL DOCUMENTS

178
(FIVE YEARS 18)

H-INDEX

28
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Edward A. Straw ◽  
Mark J. F. Brown

AbstractPollinators, particularly wild bees, are suffering declines across the globe, and pesticides are thought to be drivers of these declines. Research into, and regulation of pesticides has focused on the active ingredients, and their impact on bee health. In contrast, the additional components in pesticide formulations have been overlooked as potential threats. By testing an acute oral dose of the fungicide product Amistar, and equivalent doses of each individual co-formulant, we were able to measure the toxicity of the formulation and identify the ingredient responsible. We found that a co-formulant, alcohol ethoxylates, caused a range of damage to bumble bee health. Exposure to alcohol ethoxylates caused 30% mortality and a range of sublethal effects. Alcohol ethoxylates treated bees consumed half as much sucrose as negative control bees over the course of the experiment and lost weight. Alcohol ethoxylates treated bees had significant melanisation of their midguts, evidence of gut damage. We suggest that this gut damage explains the reduction in appetite, weight loss and mortality, with bees dying from energy depletion. Our results demonstrate that sublethal impacts of pesticide formulations need to be considered during regulatory consideration, and that co-formulants can be more toxic than active ingredients.


ACS Omega ◽  
2021 ◽  
Author(s):  
Yingxue Li ◽  
Jingjie Zhou ◽  
Yong Zhang ◽  
Huibin Liang ◽  
Jinyuan Sun ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1833
Author(s):  
Joanna Marszałek ◽  
Renata Żyłła

The aim of the work was to purify model textile wastewater (MTW) using a two-stage membrane filtration process comprising nanofiltration (NF) and reverse osmosis (RO). For this purpose, a nanofiltration membrane TFC-SR3 (KOCH) and reverse osmosis membrane AG (GE Osmonics) were used. Each model wastewater contained a selected surfactant. The greatest decrease in flux in the initial phase of the process occurred for the detergents based on fatty-acid condensation products. An evident decrease in performance was observed with polysiloxane-based surfactants. No fouling effect and high flux values were observed for the wastewater containing a nonionic surfactant based on fatty alcohol ethoxylates. During RO, a significantly higher flux and lower resistance were observed for the feed that originally contained the anionic agent. For the MTW containing the nonionic surfactant, the conductivity reduction ranged from 84% to 92% depending on the concentrate ratio at the consecutive stages of RO. After treatment, the purified wastewater was reused in the process of dyeing cellulose fibers with reactive dyes. The research confirmed that textiles dyed with the use of RO filtrates did not differ in quality of dyeing from those dyed in pure deionized water.


Catalysts ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 853
Author(s):  
Laura V. Hoyos ◽  
Laura Ramírez ◽  
Cristhian J. Yarce ◽  
Carlos Alvarez-Vasco ◽  
Nelson H. Caicedo Ortega

Glycolipids have become an ecofriendly alternative to chemically obtained surfactants, mainly for the cosmetic, pharmaceutical, and food industries. However, the sustainable production of these compounds is still challenging, because: (i) water is a recognized inhibitor, (ii) multiphases make the use of cosolvent reaction medium necessary, and (iii) there are difficulties in finding a source for both starting materials. This study used sugars and lipids from peach palm fruit shells or model compounds as substrates to synthesize glycolipids on five different renewable deep eutectic solvents (Re-DES) alone or with a cosolvent system. Substrate conversions up to 24.84% (so far, the highest reported for this reaction on DES), showing (1) the non-precipitation of glucose in the solvent, (2) emulsification and (3) low viscosity (e.g., more favorable mass transfer) as the main limiting factors for these heterogeneous enzymatic processes. The resulting conversion was reached using a cosolvent system Re-DES:DMSO:t-butanol that was robust enough to allow conversions in the range 19–25%, using either model compounds or sugar and fatty acid extracts, with free or immobilized enzymes. Finally, the characterization of the in-house synthesized glycolipids by surface tension demonstrated their potential as biosurfactants, for instance, as an alternative to alcohol ethoxylates, industrially produced using less sustainable methods.


2021 ◽  
Author(s):  
Nimesh Poddar ◽  
Tommy Hamilton ◽  
George Smith

2021 ◽  
Author(s):  
Sung-Yu Ku ◽  
Wen Sheng Lee ◽  
Nathan Rau ◽  
Wanda Buckner ◽  
Margaret Whitley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document