First Proof of Concept for Full-Scale, Direct, Low-Temperature Anaerobic Treatment of Municipal Wastewater

2021 ◽  
pp. 125786
Author(s):  
Anna Christine Trego ◽  
B. Conall Holohan ◽  
Ciara Keating ◽  
Alison Graham ◽  
Sandra O'Connor ◽  
...  
2018 ◽  
Vol 78 (9) ◽  
pp. 1861-1870 ◽  
Author(s):  
Ahmet E. Uman ◽  
Joseph G. Usack ◽  
José L. Lozano ◽  
Largus T. Angenent

Abstract A previous study had reported that the Fenton reaction at full scale increased the digestibility of thickened sludge in a digester. The authors of the study had observed a positive effect on biogas productivity, but without a control. Here, we evaluated this result by investigating the anaerobic treatment characteristics of fresh, thickened sludge in an experimental design with a control. To accomplish this, two identical continuously stirred anaerobic digesters (CSADs) were operated in parallel at mesophilic conditions. We also included anaerobic settlers to mimic the full-scale plant and to accomplish sludge recycling. We fed fresh, thickened sludge to both setups once every other day, but performed the Fenton reaction with only the experimental system by adding H2O2 to the recycled biosolids from the anaerobic settler. We observed very large fluctuations in biogas production due to ever-changing characteristics of the thickened sludge both on a daily and seasonal basis. Regardless, the two setups performed almost identically with: 1) chemical oxygen demand removal efficiencies of 63.8 ± 2.9% and 62.1 ± 3.2%; and 2) biogas productivities of 0.280 and 0.279 L CH4·g−1 volatile solids for the experimental (with Fenton) and control (without Fenton) CSADs, respectively. These results indicate that the use of a Fenton reaction did not affect biogas productivities.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 27-35 ◽  
Author(s):  
S. Knoop ◽  
S. Kunst

During recent years modern full scale wastewater treatment plants with biological nitrification, denitrification and phosphorus removal have had increasing problems with foam formation on the surfaces of aerobic tanks and with bulking activated sludge. The results of a survey in 1995 (Kunst and Knoop, 1996) showed that most often the filamentous bacterium Microthrix parvicella is responsible for these problems. Up to today there is only little knowledge about its selection criteria in activated sludge. Therefore several experiments were done in full scale activated sludge plants and in laboratory systems under defined conditions to investigate the influence of low (< 0.1 kg/(kg·d)) and high (≤ 0.2 kg/(kg·d)) BOD5-sludge loading rates on the growth and morphology of M. parvicella and the settlement of activated sludge. Furthermore the influence of temperatures of 5°C, 12°C and 20°C on the growth of M. parvicella was investigated. It was shown that M. parvicella grows at low BOD5-sludge loading rate and low temperature and is the main causative organism of bulking and foaming sludge in nutrient removal plants. On the basis of this investigation it was concluded that the growth of M. parvicella and the settling problems of the activated sludge resulting from excessive growth of this filament will always appear in modern municipal wastewater treatment plants with BOD5-sludge loading rate ≤ 0.1 kg/(kg·d) especially under low temperature conditions.


1997 ◽  
Vol 36 (2-3) ◽  
pp. 321-328 ◽  
Author(s):  
Ute Austermann-Haun ◽  
Carl Franz Seyfried ◽  
Karl-Heinz Rosenwinkel

In Germany, there are currently 106 full-scale anaerobic treatment plants treating industrial wastewater. This paper describes the operational experiences of several industries (beet sugar, starch, pectin, brewery, distillery, vegetable) which undertake anaerobic wastewater treatment, with particular emphasis on specific wastewater problems and their solutions. Also presented are experiences of the handling of high nitrate concentrations, with the treatment of mixtures of industrial wastewater from different origins, with the chance to prevent the emergence of lime, magnesium ammonium phosphate (MAP) or aluminium precipitation. This paper deals with the first municipal wastewater treatment plant combined with a separate anaerobic stage to treat a wastewater mixture of several small factories. One particular asset of this plant is the construction of the acidification tank: using the “teapot effect” to enrich the solid material in the centre of the bottom, the solids can be taken from the bottom of the tank and pumped to the municipal sludge digester.


1999 ◽  
Vol 40 (1) ◽  
pp. 305-312 ◽  
Author(s):  
U. Austermann-Haun ◽  
H. Meyer ◽  
C. F. Seyfried ◽  
K.-H. Rosenwinkel

In Germany, there are currently 125 full-scale anaerobic treatment plants treating industrial wastewater. This paper describes the operational experiences of several industries (beet sugar, starch, pectin brewery, distillery, vegetable, potato processing) which undertake anaerobic wastewater treatment, with particular emphasis on specific wastewater problems and their solutions. Also presented are experiences with the handling of high nitrate concentrations, with the treatment of mixtures of industrial wastewater from different origins, with the chance to prevent the emergence of lime, magnesium ammonium phosphate (MAP) or aluminium precipitation. This paper deals as well with the first EGSB reactor (Expanded Granular Sludge Bed) at a German potato processing factory as well as the first municipal wastewater treatment plant combined with a separate anaerobic stage to treat a wastewater mixture from several small factories.


2007 ◽  
Vol 56 (10) ◽  
pp. 37-44 ◽  
Author(s):  
I. Urban ◽  
D. Weichgrebe ◽  
K.-H. Rosenwinkel

The anaerobic treatment of municipal wastewater enables new applications for the reuse of wastewater. The effluent could be used for irrigation as the included nutrients are not affected by the treatment. Much more interesting now are renewable energies and the retrenchment of CO2 emission. With the anaerobic treatment of municipal wastewater, not only can the CO2 emission be reduced but “clean” energy supply can be gained by biogas. Most important for the sustainability of this process is the gathering of methane from the liquid effluent of the reactor, because the negative climate-relevant effect from the degassing methane is much higher than the positive effect from saving CO2 emission. In this study, UASB reactors were used with a flocculent sludge blanket for the biodegradation of the carbon fraction in the wastewater with different temperatures and concentrations. It could be shown that the positive effect is much higher for municipal wastewater with high concentrations in hot climates.


Sign in / Sign up

Export Citation Format

Share Document