scholarly journals Uniform sensing layer of immiscible enzyme-mediator compounds developed via a spray aerosol mixing technique towards low cost minimally invasive microneedle continuous glucose monitoring devices

2018 ◽  
Vol 118 ◽  
pp. 224-230 ◽  
Author(s):  
Siamak Samavat ◽  
Jonathan Lloyd ◽  
Laura O’Dea ◽  
Wei Zhang ◽  
Emily Preedy ◽  
...  
2019 ◽  
Vol 11 (1) ◽  
pp. 255-255 ◽  
Author(s):  
Yushi Hirota ◽  
Masao Toyoda ◽  
Takashi Murata ◽  
Junnosuke Miura

2008 ◽  
Vol 2 (2) ◽  
Author(s):  
Christopher P. Erdman ◽  
Stephen M. Goldman ◽  
Patrick J. Lynn ◽  
Matthew C. Ward

Blood sugar management is particularly critical in the neonatal intensive care unit where the incidence of hypoglycemia is high and patients run the risk of brain damage. The staff at most hospitals obtain glucose levels in infants by drawing blood from the heel, which is a cause for recurrent pain. Some infants undergo this procedure every 1–3hours for up to a few months. Our goal is to design a minimally invasive device that allows for real-time glucose monitoring in very low birth weight infants in the neonatal intensive care unit (NICU). This glucose monitor will reduce the amount of pain and physiological stress on the infants, decrease the risk of hypoglycemia in neonates and reduce the workload on hospital staff. There is currently much room for emerging technologies in this market as it trends towards less pain and faster responses. The device should only slightly hinder the infant’s motion, be as painless as possible, and all materials used in contact with the body need to be biologically inert and cause no irritation or allergic reaction. The device will utilize a microneedle array to extract interstitial fluid and draw it through a hydrophilic polyurethane membrane and into a polarimetry chamber. Circularly polarized light will be passed through the chamber and the differential absorbance of left and right polarized light will be used to calculate the glucose concentration. A literature and patent review showed that each separate portion could be used in an effective device for minimally invasive, continuous glucose monitoring.


2009 ◽  
Vol 3 (5) ◽  
pp. 1207-1214 ◽  
Author(s):  
D. Barry Keenan ◽  
John J. Mastrototaro ◽  
Gayane Voskanyan ◽  
Garry M. Steil

Through the use of enzymatic sensors—inserted subcutaneously in the abdomen or ex vivo by means of microdialysis fluid extraction—real-time minimally invasive continuous glucose monitoring (CGM) devices estimate blood glucose by measuring a patient's interstitial fluid (ISF) glucose concentration. Signals acquired from the interstitial space are subsequently calibrated with capillary blood glucose samples, a method that has raised certain questions regarding the effects of physiological time lags and of the duration of processing delays built into these devices. The time delay between a blood glucose reading and the value displayed by a continuous glucose monitor consists of the sum of the time lag between ISF and plasma glucose, in addition to the inherent electrochemical sensor delay due to the reaction process and any front-end signal-processing delays required to produce smooth traces. Presented is a review of commercially available, minimally invasive continuous glucose monitors with manufacturer-reported device delays. The data acquisition process for the Medtronic MiniMed (Northridge, CA) continuous glucose monitoring system—CGMS® Gold—and the Guardian® RT monitor is described with associated delays incurred for each processing step. Filter responses for each algorithm are examined using in vitro hypoglycemic and hyperglycemic clamps, as well as with an analysis of fast glucose excursions from a typical meal response. Results demonstrate that the digital filters used by each algorithm do not cause adverse effects to fast physiologic glucose excursions, although nonphysiologic signal characteristics can produce greater delays.


2020 ◽  
Vol 4 (6) ◽  
pp. 352-357
Author(s):  
F.O. Ushanova ◽  
◽  
T.Yu. Demidova ◽  

Currently, the management of pregnant women with carbohydrate metabolism disorders is challenging due to the high risk of unfavorable events both for the mother and the child even in insignificant deviations from the target value. In addition to the conventional methods of self-monitoring, continuous glucose monitoring (CGM) is an important tool to control diabetes. CGM in pregnant women provides the detailed information on the type and trends of the changes in blood glucose levels and the fluctuations of glucose levels and also identifies the episodes of latent nocturnal hypoglycemia and postprandial hyperglycemia. The analysis of CGM data allows for correcting insulin therapy, taking a decision on its initiation, and modifying diet and exercise plan. Multiple studies demonstrate the efficacy of CGM in terms of compensating manifest diabetes. As to gestational diabetes, the eligibility of modern glucose monitoring technologies for the prevention of various complications is still controversial. Further studies on the potential use of these devices in gestational diabetes could provide a basis for increasing their application in routine clinical practice. This will improve the management of pregnant women with carbohydrate metabolism disorders.KEYWORDS: diabetes, gestational diabetes, continuous glucose monitoring, flash monitoring, pregnancy, macrosomia, self-monitoring.FOR CITATION: Ushanova F.O., Demidova T.Yu. Potentialities of modern glucose monitoring devices during pregnancy. Russian Medical Inquiry. 2020;4(6):352–357. DOI: 10.32364/2587-6821-2020-4-6-352-357.


2019 ◽  
Vol 14 (1) ◽  
pp. 83-86 ◽  
Author(s):  
Sarah Puhr ◽  
Mark Derdzinski ◽  
Andrew Scott Parker ◽  
John B. Welsh ◽  
David A. Price

Background: Frequent real-time continuous glucose monitoring (rtCGM) data viewing has been associated with reduced mean glucose and frequent scanning of an intermittently scanned continuous glucose monitoring (isCGM) system has been associated with reduced hypoglycemia for patients with diabetes. However, requiring patients to frequently interact with their glucose monitoring devices to detect actual or impending hypoglycemia is burdensome. We hypothesized that a predictive low glucose alert, which forecasts glucose ≤55 mg/dL within 20 minutes and is included in a new rtCGM system, could mitigate hypoglycemia without requiring frequent device interaction. Methods: We analyzed estimated glucose values (EGVs) from an anonymized convenience sample of 15,000 patients who used Dexcom G6 (Dexcom, Inc, San Diego, CA, USA) and its mobile app for at least 30 days with or without the “Urgent Low Soon” alert (ULS) enabled. Screen view frequency was determined as the frequency with which the trend screen was accessed on the app. Multiple screen views within any 5-minute interval were counted as one. Hypoglycemia exposure for patients in the top and bottom quartiles of screen view frequency (>8.25 and <3.30 per day, respectively) was calculated as the percentage of EGVs below various thresholds. Results: Over 93% of users enabled the ULS alert; its use was associated with significantly reduced hypoglycemia <55 and <70 mg/dL, independent of screen view frequency. Conclusion: Use of the G6 ULS alert may disencumber rtCGM users by promoting significant reductions in hypoglycemia without requiring frequent device interactions.


2020 ◽  
pp. 193229681989939 ◽  
Author(s):  
Olesya Didyuk ◽  
Nicolas Econom ◽  
Angelica Guardia ◽  
Kelsey Livingston ◽  
Ulrike Klueh

The concept of implantable glucose sensors has been promulgated for more than 40 years. It is now accepted that continuous glucose monitoring (CGM) increases quality of life by allowing informed diabetes management decisions as a result of more optimized glucose control. The focus of this article is to provide a brief overview of the CGM market history, emerging technologies, and the foreseeable challenges for the next CGM generations as well as proposing possible solutions in an effort to advance the next generation of implantable sensor.


Sign in / Sign up

Export Citation Format

Share Document