Comparison of short-wavelength infrared (SWIR) hyperspectral imaging system with an FT-NIR spectrophotometer for predicting alpha-amylase activities in individual Canadian Western Red Spring (CWRS) wheat kernels

2011 ◽  
Vol 108 (4) ◽  
pp. 303-310 ◽  
Author(s):  
Juan Xing ◽  
Stephen Symons ◽  
David Hatcher ◽  
Muhammad Shahin
Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3147 ◽  
Author(s):  
Liu Zhang ◽  
Zhenhong Rao ◽  
Haiyan Ji

In this study, a hyperspectral imaging system of 866.4–1701.0 nm was selected and combined with multivariate methods to identify wheat kernels with different concentrations of omethoate on the surface. In order to obtain the optimal model combination, three preprocessing methods (standard normal variate (SNV), Savitzky–Golay first derivative (SG1), and multivariate scatter correction (MSC)), three feature extraction algorithms (successive projections algorithm (SPA), random frog (RF), and neighborhood component analysis (NCA)), and three classifier models (decision tree (DT), k-nearest neighbor (KNN), and support vector machine (SVM)) were applied to make a comparison. Firstly, based on the full wavelengths modeling analysis, it was found that the spectral data after MSC processing performed best in the three classifier models. Secondly, three feature extraction algorithms were used to extract the feature wavelength of MSC processed data and based on feature wavelengths modeling analysis. As a result, the MSC–NCA–SVM model performed best and was selected as the best model. Finally, in order to verify the reliability of the selected model, the hyperspectral image was substituted into the MSC–NCA–SVM model and the object-wise method was used to visualize the image classification. The overall classification accuracy of the four types of wheat kernels reached 98.75%, which indicates that the selected model is reliable.


LWT ◽  
2021 ◽  
Vol 138 ◽  
pp. 110678
Author(s):  
Irina Torres ◽  
Dolores Pérez-Marín ◽  
Miguel Vega-Castellote ◽  
María-Teresa Sánchez

2018 ◽  
Vol 11 (1) ◽  
Author(s):  
Xuping Feng ◽  
Chenliang Yu ◽  
Xiaodan Liu ◽  
Yunfeng Chen ◽  
Hong Zhen ◽  
...  

Author(s):  
Hyeong-Geun Yu ◽  
Whimin Kim ◽  
Dong-Jo Park ◽  
Dong Eui Chang ◽  
Hyunwoo Nam

2018 ◽  
Vol 8 (12) ◽  
pp. 2602 ◽  
Author(s):  
Laurence Schimleck ◽  
Joseph Dahlen ◽  
Seung-Chul Yoon ◽  
Kurt Lawrence ◽  
Paul Jones

Near-infrared (NIR) spectroscopy and NIR hyperspectral imaging (NIR-HSI) were compared for the rapid estimation of physical and mechanical properties of No. 2 visual grade 2 × 4 (38.1 mm by 88.9 mm) Douglas-fir structural lumber. In total, 390 lumber samples were acquired from four mills in North America and destructively tested through bending. From each piece of lumber, a 25-mm length block was cut to collect diffuse reflectance NIR spectra and hyperspectral images. Calibrations for the specific gravity (SG) of both the lumber (SGlumber) and 25-mm block (SGblock) and the lumber modulus of elasticity (MOE) and modulus of rupture (MOR) were created using partial least squares (PLS) regression and their performance checked with a prediction set. The strongest calibrations were based on NIR spectra; however, the NIR-HSI data provided stronger predictions for all properties. In terms of fit statistics, SGblock gave the best results, followed by SGlumber, MOE, and MOR. The NIR-HSI SGlumber, MOE, and MOR calibrations were used to predict these properties for each pixel across the transverse surface of the scanned samples, allowing SG, MOE, and MOR variation within and among rings to be observed.


Sign in / Sign up

Export Citation Format

Share Document