scholarly journals Vibration analysis of the fruit detachment process in late-season ‘Valencia’ orange with canopy shaker technology

2018 ◽  
Vol 170 ◽  
pp. 130-137 ◽  
Author(s):  
Sergio Castro-Garcia ◽  
Rafael R. Sola-Guirado ◽  
Jesus A. Gil-Ribes
1978 ◽  
Vol 18 (92) ◽  
pp. 461 ◽  
Author(s):  
PT Gallasch

At Loxton, South Australia, early harvest of heavy, and late harvest of light, Valencia orange crops was compared with the common practice: early harvest of light and late harvest of heavy crops. These treatments were compared with two years of early, mid- or late season harvests. Early harvest of heavy and late harvest of light crops changed the 3.1:1.0 alternate cropping cycle to 1.1:10 and increased the light crop by 101 per cent compared with the common district practice which gave a 3.2 : 10 cycle. Consistent early and mid-season harvests reduced the alternate cropping ratio to 1.3 : 1.0 and 1.4 : 1.0 respectively, produced 14 per cent more fruit than the common district practice and avoided harvesting the light crop late, when fruit quality is poor. Mature fruit weights from trees consistently harvested late were 27 per cent lower than those trees harvested mid-season.


2017 ◽  
Vol 155 ◽  
pp. 77-83 ◽  
Author(s):  
S. Castro-Garcia ◽  
G.L. Blanco-Roldán ◽  
Louise Ferguson ◽  
E.J. González-Sánchez ◽  
J.A. Gil-Ribes

2019 ◽  
Vol 246 ◽  
pp. 916-920 ◽  
Author(s):  
Fernando Aragon-Rodriguez ◽  
Sergio Castro-Garcia ◽  
Rafael Rubén Sola-Guirado ◽  
Jesús A. Gil-Ribes

HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 660-663 ◽  
Author(s):  
Jacqueline K. Burns ◽  
Fritz M. Roka ◽  
Kuo-Tan Li ◽  
Luis Pozo ◽  
Richard S. Buker

An abscission agent (5-chloro-3-methyl-4-nitro-1H-pyrazole [CMNP]) at 300 mg·L–1 in a volume of 2810 L·ha–1 was applied to Valencia orange trees [Citrus sinensis (L.) Osb.] on 22 May 2004. At this time, immature and mature fruit were present on the tree simultaneously. Three days after application, fruit were mechanically harvested using a trunk-shake-and-catch system. The power to the shaker head was operated at full- or half-throttle (FT or HT, respectively), and the duration of trunk shaking was 2 seconds at FT or 4 seconds at FT and HT. Mature fruit removal percentage and number of immature fruit removed, and fruitlet weight and diameter were determined. Mature fruit removal percentage with 2 seconds at FT or 4 seconds at FT harvesting ±CMNP, or 4 seconds at HT + CMNP was not significantly different and ranged between 89% to 97%. Harvesting at 4 seconds HT without CMNP removed significantly less mature fruit than any treatment. CMNP did not affect immature fruit removal by the trunk shaker. Harvesting at 4 seconds at HT removed significantly less immature fruit than 2 seconds at FT or 4 seconds at FT. No significant difference in fruitlet weight or diameter was measured between any trunk shaker harvest operation and CMNP treatment. Trunk shaking frequency was estimated to be 4.8 and 8.0 Hz at HT and FT, respectively. Yield in 2005 was determined on the same trees used for harvest treatments in 2004. CMNP did not impact yield. No significant difference in yield was seen between the hand-picked control and 4 seconds at HT, whereas yield in the remaining treatments was lower. The results demonstrate that CMNP application combined with low frequency trunk shaker harvesting can achieve high percentage of mature fruit removal with no significant impact on return yield of the following crop.


HortScience ◽  
2011 ◽  
Vol 46 (7) ◽  
pp. 1006-1009
Author(s):  
Timothy M. Spann ◽  
Luis V. Pozo ◽  
Igor Kostenyuk ◽  
Jacqueline K. Burns

In Florida, the combined use of mechanical harvesters and the abscission agent 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP) for late-season harvesting (May to June) of fruit of ‘Valencia’ orange is effective at removing mature fruit with minimal adverse effects on the subsequent season's crop. However, CMNP can cause fruit peel scarring, and no data were available on how this affects peel integrity and potential losses resulting from fruit crushing and/or decay before processing. In this study, two late-season harvest dates were tested in commercial orchards during 2009 and 2010. Harvesting treatments consisted of combinations of two mechanical harvester ground speeds (0.8 and 1.6 km·h−1), two harvester shaker head frequencies (185 and 220 cycles/min), and CMNP foliar applications (4 days before harvesting) at 250 and 300 mg·L−1 in a spray volume of 2810 L·ha−1 plus mechanically-harvested and hand-picked controls. After harvesting, fruit samples were randomly collected from each block for peel resistance and postharvest decay evaluations. Peel resistance was determined by measuring both peel puncture force and fruit crush force. Fruit used to study postharvest decay were stored at 27 °C and 50% relative humidity or ambient conditions and evaluated daily for 8 days. Peel resistance was unaffected by mechanical harvesting combinations or CMNP application. No significant effects on postharvest decay were found among treatments for at least 3 days after harvest. However, a significant increase in postharvest decay between CMNP-treated and untreated fruit began between 4 and 6 days after harvest such that by 8 days after harvest, decay was as high as 25% in CMNP-treated fruit. The results indicate that CMNP can be safely used in combination with late-season mechanical harvesting under the conditions described in this study without losses resulting from fruit crushing or decay for at least 3 days, a time period well within the normal commercial harvest-to-processing time of ≈36 h.


Sign in / Sign up

Export Citation Format

Share Document