Effect of time of harvest on alternate cropping yields and fruit quality of Valencia orange trees

1978 ◽  
Vol 18 (92) ◽  
pp. 461 ◽  
Author(s):  
PT Gallasch

At Loxton, South Australia, early harvest of heavy, and late harvest of light, Valencia orange crops was compared with the common practice: early harvest of light and late harvest of heavy crops. These treatments were compared with two years of early, mid- or late season harvests. Early harvest of heavy and late harvest of light crops changed the 3.1:1.0 alternate cropping cycle to 1.1:10 and increased the light crop by 101 per cent compared with the common district practice which gave a 3.2 : 10 cycle. Consistent early and mid-season harvests reduced the alternate cropping ratio to 1.3 : 1.0 and 1.4 : 1.0 respectively, produced 14 per cent more fruit than the common district practice and avoided harvesting the light crop late, when fruit quality is poor. Mature fruit weights from trees consistently harvested late were 27 per cent lower than those trees harvested mid-season.

1978 ◽  
Vol 18 (91) ◽  
pp. 309 ◽  
Author(s):  
PT Gallasch

Gibberellic acid (GA) was sprayed on whole Valencia orange trees in 1971 at Loxton in South Australia with the aim of reducing the size of the heavy crop and the alternate cropping cycle. Sprays were applied in June or July at 25 p.p.m. but there was no reduction in mature fruit weights in 1972. In 1973, sprays of GA at 25 p.p.m, were applied twice, about two weeks apart, commencing on either May 7 or 22. In the following November treated trees had 75 per cent fewer fruitlets, but by the time fruit were mature, trees had fully compensated for this early reduction in fruit numbers by increased set and reduced December drop. Again the weight of mature fruit was not reduced at the timings and concentrations used and hence GA cannot be recommended for the control of alternate cropping.


HortScience ◽  
2006 ◽  
Vol 41 (3) ◽  
pp. 660-663 ◽  
Author(s):  
Jacqueline K. Burns ◽  
Fritz M. Roka ◽  
Kuo-Tan Li ◽  
Luis Pozo ◽  
Richard S. Buker

An abscission agent (5-chloro-3-methyl-4-nitro-1H-pyrazole [CMNP]) at 300 mg·L–1 in a volume of 2810 L·ha–1 was applied to Valencia orange trees [Citrus sinensis (L.) Osb.] on 22 May 2004. At this time, immature and mature fruit were present on the tree simultaneously. Three days after application, fruit were mechanically harvested using a trunk-shake-and-catch system. The power to the shaker head was operated at full- or half-throttle (FT or HT, respectively), and the duration of trunk shaking was 2 seconds at FT or 4 seconds at FT and HT. Mature fruit removal percentage and number of immature fruit removed, and fruitlet weight and diameter were determined. Mature fruit removal percentage with 2 seconds at FT or 4 seconds at FT harvesting ±CMNP, or 4 seconds at HT + CMNP was not significantly different and ranged between 89% to 97%. Harvesting at 4 seconds HT without CMNP removed significantly less mature fruit than any treatment. CMNP did not affect immature fruit removal by the trunk shaker. Harvesting at 4 seconds at HT removed significantly less immature fruit than 2 seconds at FT or 4 seconds at FT. No significant difference in fruitlet weight or diameter was measured between any trunk shaker harvest operation and CMNP treatment. Trunk shaking frequency was estimated to be 4.8 and 8.0 Hz at HT and FT, respectively. Yield in 2005 was determined on the same trees used for harvest treatments in 2004. CMNP did not impact yield. No significant difference in yield was seen between the hand-picked control and 4 seconds at HT, whereas yield in the remaining treatments was lower. The results demonstrate that CMNP application combined with low frequency trunk shaker harvesting can achieve high percentage of mature fruit removal with no significant impact on return yield of the following crop.


1978 ◽  
Vol 18 (90) ◽  
pp. 152 ◽  
Author(s):  
PT Gallasch

Three experiments were done in the Riverland district of South Australia with the aim of controlling alternate cropping of mature Valencia orange trees by chemical thinning. In experiment 1, 300 p.p.m. ethephon was applied in either October, November or December. In experiment 2, sprays of either 200, 250, 300 or 350 p.p.m. ethephon were applied in late November. In experiment 3, sprays of either ethephon, NAA or a mixture of both were applied in early December. Sprays of ethephon in December were more effective than in October, and resulted in a 40 per cent reduction of mature fruit weight in a heavy crop year. All concentrations of ethephon of 250 p.p.m, or more reduced the heavy crop load, and in the following year increased light crops. A 15 per cent reduction in crop load following sprays of 250 p.p.m, gave even cropping trees. Treated trees produced, over two years, 10 per cent more fruit weight than control trees. Fruit from treated trees were larger in the heavy crop year and smaller the following year. In the third experiment, 300 p.p.m. ethephon reduced the mature crop by 31 per cent and 500 p.p.m. NAA reduced it by 18 per cent. A mixture of the two chemicals effected a 51 per cent reduction in crop load, but the NAA did not significantly reduce leaf drop. NAA at 500 p.p.m. resulted in the most even cropping trees.


HortScience ◽  
2017 ◽  
Vol 52 (8) ◽  
pp. 1092-1099 ◽  
Author(s):  
Anne Plotto ◽  
Elizabeth Baldwin ◽  
Jinhe Bai ◽  
John Manthey ◽  
Smita Raithore ◽  
...  

A 3-year study was undertaken to establish the effect of field nutritional sprays, combined with insecticide treatments or not against Asian Citrus psyllid, on the fruit quality of ‘Valencia’ orange trees affected by the greening disease Huanglongbing (HLB). Four replicated plots were harvested, juiced, and pasteurized. Nine to twelve trained panelists evaluated the juice using seven flavor, five taste, four mouthfeel and three aftertaste descriptors. There was little difference between treatments in 2013; only orange peel flavor and bitterness were significantly lower for the insecticide treatment. In 2014, positive attributes, such as orange and fruity flavor, sweetness and mouthfeel body, were significantly higher in the insecticide treatment. Sourness was highest in untreated control, and there were no differences between treatments for bitterness. In 2015, negative attributes, such as grapefruit, orange peel and typical HLB flavor, sourness, bitterness, and astringency, were significantly higher in untreated control fruit, suggesting perhaps that the beneficial effect of nutritional and insecticide treatments was cumulative, only manifesting on the 3rd year of the study, and or because of the progression of the disease affecting untreated controls. Data are discussed in relation to juice chemical composition, including volatiles, sugars, acids, limonoids, and flavonoids, adding to the fundamental knowledge concerning chemical drivers of orange flavor.


Sign in / Sign up

Export Citation Format

Share Document