fruit abscission
Recently Published Documents


TOTAL DOCUMENTS

223
(FIVE YEARS 45)

H-INDEX

24
(FIVE YEARS 4)

HortScience ◽  
2022 ◽  
Vol 57 (1) ◽  
pp. 40-47
Author(s):  
Wei Hai Yang ◽  
Chao Zhong Lu ◽  
Wei Chen ◽  
Huan Yu Xu

Fruit abscission occurring severely in the early fruit development affects macadamia yield. Developing effective methods to improve fruit retention is a priority for macadamia cultivation and production. Girdling is an important horticultural practice that has been widely used to increase fruit yield. Previous studies have shown that girdling fails to increase macadamia yield despite enhancing the early fruit set, but few have examined the effect of girdling on its related physiological mechanism. The objective of this study was to investigate the effects of main-branch girdling (MBG) on early fruit retention and also on the levels of carbohydrates and endogenous hormones in the leaves, bearing shoots and fruit of macadamia. Herein, MBG was performed at fruit set using a single-blade knife on 9-year-old macadamia trees (Macadamia integrifolia). Results showed that MBG significantly reduced young fruit drop, concurrent with significant increases in the contents of starch in both the leaves and the bearing shoots and in glucose, fructose, and sucrose levels in the husk and seed. It was suggested that the availability of carbohydrate for fruit retention was improved by MBG. Additionally, MBG increased indole-3-acetic acid (IAA), gibberellin (GA3), and zeatin-riboside (ZR, a type of cytokinin) concentrations and decreased abscisic acid (ABA) contents in the husk and the seed, indicating that MBG reduced the early fruit drop by modifying the balance of endogenous hormones. Therefore, a positive interplay between carbohydrates and endogenous hormones induced by MBG was involved in the reduction of early fruit abscission in macadamia.


2022 ◽  
Vol 292 ◽  
pp. 110610
Author(s):  
Nídia Rosa ◽  
Glória Àvila ◽  
J. Carbó ◽  
Wim Verjans ◽  
J. Bonany ◽  
...  

Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 576
Author(s):  
Qian Wu ◽  
Xingshuai Ma ◽  
Qingxin Chen ◽  
Ye Yuan ◽  
Huicong Wang ◽  
...  

Fruit abscission is triggered by multiple changes in endogenous components of the fruit, including energy metabolism. However, it is still unknown how the core energy metabolism pathways are modified during fruit abscission. Here, we investigated the relationship between carbon starvation-induced fruitlet abscission and energy metabolism changes in litchi. The fruitlet abscission of litchi ‘Feizixiao’ was induced sharply by girdling plus defoliation (GPD), a carbon stress treatment. Using liquid chromatography tandem mass spectrometry (LC-MS/MS) targeted metabolomics analysis, we identified a total of 21 metabolites involved in glycolysis, TCA cycle and oxidative phosphorylation pathways. Among them, the content of most metabolites in glycolysis pathways and TCA cycles was reduced, and the activity of corresponding metabolic enzymes such as ATP-dependent phosphofructokinase (ATP-PFK), pyruvate kinase (PK), citrate synthase (CS), succinate thiokinase (SAT), and NAD-dependent malate dehydrogenase (NAD-MDH) was decreased. Consistently, we further showed that the expression of the relative genes (LcPFK2, LcPK2, LcPK4, LcCS1, LcCS2, LcSAT, LcMDH1 and LcMDH2) was also significantly down-regulated. In contrast, the level of ATP, an important metabolite in the oxidative phosphorylation pathway, was elevated in parallel with both higher activity of H+-ATPase and the increased expression level of LcH+-ATPase1. In conclusion, our findings suggest that carbon starvation can induce fruitlet abscission in litchi probably by energy depletion that mediated through both the suppression of the glycolysis pathway and TCA cycle and the enhancement of the oxidative phosphorylation pathway.


Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 380
Author(s):  
Jaime Yoke-Sum Low ◽  
Po-Yee Fong ◽  
Chee-Keng Teh ◽  
Ai-Ling Ong ◽  
Chin-Ming Lim ◽  
...  

Oil palm seed producers typically require 10 months of various processes from pollination to seed germination to produce commercial dura × pisifera hybrid seeds. Conventional forced fruit shedding from underripe fresh fruit bunches (FFB) usually causes seed damage and an extended retting period (incubation for natural fruit abscission from spikelets), eventually leading to bunch rot and disease infection. As a fruit ripening agent, ethephon has been explored to hasten fruit abscission in many fruit crops and oil palm. Nevertheless, the previous studies in oil palm only focused on fruit shedding from FFB to improve oil extraction rate in oil mills without considering the actual FFB ripeness and retting period, which are critical for oil palm seed production. In this study, the application of ethephon containing buffer (adjusted to pH 9.0) to underripe FFB at 145 days after pollination (DAP), 135 DAP and 125 DAP resulted in 50% more fruit abscission after a 72-h incubation. Considering the minimal seed loss upon FFB harvest (<1%) and 50% reduction in retting period, underripe FFB at around 145 DAP was found to be optimum for seed production using ethephon treatment. The treatment, however, made negligible improvement in fruit detachment for ripe FFB at 150 DAP and older. Importantly, seed germination and culling rate at nursery stages were not significantly affected by the ethephon treatment. Hence, ethephon application can improve commercial seed production practices for oil palm.


Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 270
Author(s):  
Seanna Hewitt ◽  
Benjamin Kilian ◽  
Tyson Koepke ◽  
Jonathan Abarca ◽  
Matthew Whiting ◽  
...  

The harvesting of sweet cherry (Prunus avium L.) fruit is a labor-intensive process. The mechanical harvesting of sweet cherry fruit is feasible; however, it is dependent on the formation of an abscission zone at the fruit–pedicel junction. The natural propensity for pedicel-–fruit abscission zone (PFAZ) activation varies by cultivar, and the general molecular basis for PFAZ activation is not well characterized. In this study, ethylene-inducible change in pedicel fruit retention force (PFRF) was recorded in a developmental time-course with a concomitant analysis of the PFAZ transcriptome from three sweet cherry cultivars. In ‘Skeena’, mean PFRF for both control and treatment fruit dropped below the 0.40 kg-force (3.92 N) threshold for mechanical harvesting, indicating the activation of a discrete PFAZ. In ‘Bing’, mean PFRF for both control and treatment groups decreased over time. However, a mean PFRF conducive to mechanical harvesting was achieved only in the ethylene-treated fruit. While in ‘Chelan’ the mean PFRF of the control and treatment groups did not meet the threshold required for efficient mechanical harvesting. Transcriptome analysis of the PFAZ region followed by the functional annotation, differential expression analysis, and gene ontology (GO) enrichment analyses of the data facilitated the identification of phytohormone-responsive and abscission-related transcripts, as well as processes that exhibited differential expression and enrichment in a cultivar-dependent manner over the developmental time-course. Additionally, read alignment-based variant calling revealed several short variants in differentially expressed genes, associated with enriched gene ontologies and associated metabolic processes, lending potential insight into the genetic basis for different abscission responses between the cultivars. These results provide genetic targets for the induction or inhibition of PFAZ activation, depending on the desire to harvest the fruit with or without the stem attached. Understanding the genetic mechanisms underlying the development of the PFAZ will inform future cultivar development while laying a foundation for mechanized sweet cherry harvest.


2021 ◽  
Vol 22 (16) ◽  
pp. 8830
Author(s):  
Karthika Sriskantharajah ◽  
Walid El Kayal ◽  
Davoud Torkamaneh ◽  
Murali M. Ayyanath ◽  
Praveen K. Saxena ◽  
...  

Apples (Malus domestica Borkh) are prone to preharvest fruit drop, which is more pronounced in ‘Honeycrisp’. Hexanal is known to improve fruit retention in several economically important crops. The effects of hexanal on the fruit retention of ‘Honeycrisp’ apples were assessed using physiological, biochemical, and transcriptomic approaches. Fruit retention and fruit firmness were significantly improved by hexanal, while sugars and fresh weight did not show a significant change in response to hexanal treatment. At commercial maturity, abscisic acid and melatonin levels were significantly lower in the treated fruit abscission zone (FAZ) compared to control. At this stage, a total of 726 differentially expressed genes (DEGs) were identified between treated and control FAZ. Functional classification of the DEGs showed that hexanal downregulated ethylene biosynthesis genes, such as S-adenosylmethionine synthase (SAM2) and 1-aminocyclopropane-1-carboxylic acid oxidases (ACO3, ACO4, and ACO4-like), while it upregulated the receptor genes ETR2 and ERS1. Genes related to ABA biosynthesis (FDPS and CLE25) were also downregulated. On the contrary, key genes involved in gibberellic acid biosynthesis (GA20OX-like and KO) were upregulated. Further, hexanal downregulated the expression of genes related to cell wall degrading enzymes, such as polygalacturonase (PG1), glucanases (endo-β-1,4-glucanase), and expansins (EXPA1-like, EXPA6, EXPA8, EXPA10-like, EXPA16-like). Our findings reveal that hexanal reduced the sensitivity of FAZ cells to ethylene and ABA. Simultaneously, hexanal maintained the cell wall integrity of FAZ cells by regulating genes involved in cell wall modifications. Thus, delayed fruit abscission by hexanal is most likely achieved by minimizing ABA through an ethylene-dependent mechanism.


2021 ◽  
Vol 8 (6) ◽  
pp. 202340
Author(s):  
Xiao Hu ◽  
Mi Yang ◽  
Shoufu Gong ◽  
Hongbo Li ◽  
Jian Zhang ◽  
...  

Immature fruit abscission is a key limiting factor in Camellia oleifera Abel. ( C. oleifera ) yield. Ethylene is considered to be an important phytohormone in regulating fruit abscission. However, the molecular mechanism of ethylene in regulating fruit abscission in C. oleifera has not yet been studied. Here, we found that the 1-aminocyclopropane-1-carboxylic acid (ACC) content was significantly increased in the abscission zones (AZs) of abnormal fruits (AF) which were about to abscise when compared with normal fruits (NF) in C. oleifera ‘Huashuo’. Furthermore, exogenous ethephon treatment stimulated fruit abscission. The cumulative rates of fruit abscission in ethephon-treated fruits (ETH-F) on the 4th (35.0%), 8th (48.7%) and 16th (57.7%) days after treatment (DAT) were significantly higher than the control. The ACC content and 1-aminocyclopropane-1-carboxylate oxidase (ACO) activity in AZs of ETH-F were also significantly increased when compared with NF on the 4th and 8th DAT. CoACO1 and CoACO2 were isolated in C. oleifera for the first time. The expressions of CoACO1 and CoACO2 were considerably upregulated in AZs of AF and ETH-F. This study suggested that ethylene played an important role in immature fruit abscission of C. oleifera and the two CoACOs were the critical genes involved in ethylene's regulatory role.


2021 ◽  
Author(s):  
Karthika Sriskantharajah ◽  
Walid El Kayal ◽  
Davoud Torkamaneh ◽  
Murali Mohan Ayyanath ◽  
Praveen K Saxena ◽  
...  

Apples (Malus domestica Borkh) are prone to pre-harvest fruit drop which is more pronounced in 'Honeycrisp'. Using a transcriptomic approach, we analyzed the molecular mechanisms of fruit retention in 'Honeycrisp'. A total of 726 differentially expressed genes (DEGs) were identified in the abscission zone of hexanal-treated and untreated fruit (FAZ). Hexanal down-regulated the genes involved in ethylene biosynthesis, such as S-adenosylmethionine synthase (SAM2) and 1-aminocyclopropane-1carboxylic acid oxidases (ACO3, ACO4 and ACO4-like). Genes related to ABA biosynthesis (FDPS and CLE25) were also down-regulated. On the contrary, gibberellic acid (GA) biosynthesis genes, gibberellin 20 oxidase1-like (GA20OX-like) and ent-kaurene oxidase (KO) were up-regulated. Further, hexanal down-regulated the expression of genes related to cell-wall remodelling enzymes such as polygalacturonase (PG1), glucanases (endo-β-1,4-glucanase; EG) and expansins (EXPA1-like, EXPA6, EXPA8, EXPA10-like, EXPA16-like). Hexanal also reduced ethylene, and abscisic acid (ABA) production at commercial harvest stage. Hexanal reduced ethylene production in fruits and thus reduced the sensitivity of FAZ cells to ethylene and ABA. Simultaneously, hexanal maintained the cell-wall integrity of FAZ cells by regulating genes involved in cell-wall modifications. Our findings show that fruit abscission is delayed by hexanal, by down regulating ABA through an ethylene-dependent mechanism.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249975
Author(s):  
Youngsuk Lee ◽  
Van Giap Do ◽  
Seonae Kim ◽  
Hunjoong Kweon ◽  
Tony K. McGhie

Fruit abscission is a complex physiological process that is regulated by internal and environmental factors. During early development, apple fruit are exposed to extreme temperature fluctuations that are associated with premature fruit drop; however, their effect on fruit abscission is largely unknown. We hypothesized that fruit abscission is triggered by cold stress and investigated the molecular basis of premature fruit drop using RNA-Seq and metabolomics data from apple fruit undergoing abscission following cold stress in the field. Genes responsive to abscisic acid signaling and cell wall degradation were upregulated during abscission, consistent with the increased abscisic acid concentrations detected by liquid chromatography-mass spectrometry. We performed ex vivo cold shock experiments with excised tree subunits consisting of a branch, pedicel, and fruit. Abscission induction occurred in the cold-stressed subunits with concurrent upregulation of abscisic acid biosynthesis (MdNCED1) and metabolism (MdCYP707A) genes, and ethylene biosynthesis (MdACS1) and receptor (MdETR2) genes in the pedicel. Another key finding was the activation of cytoplasmic streaming in abscission-zone cells detected by electron microscopy. Our results provide a novel insight into the molecular basis of fruit abscission physiology in response to cold stress in apple.


Sign in / Sign up

Export Citation Format

Share Document