Combined use of free vascularised bone graft and extracorporeally-irradiated autograft for the reconstruction of massive bone defects after resection of malignant tumour

2007 ◽  
Vol 60 (9) ◽  
pp. 1013-1018 ◽  
Author(s):  
Keiichi Muramatsu ◽  
Koichiro Ihara ◽  
Takahiro Hashimoto ◽  
Shinichiro Seto ◽  
Toshihiko Taguchi
2021 ◽  
Vol 64 (6) ◽  
pp. 26-32
Author(s):  
Elena Pavlovschi ◽  
◽  
Alina Stoian ◽  
Grigore Verega ◽  
Viorel Nacu ◽  
...  

Background: The use of bone graft has been a successful step in the treatment of a large number of diseases of the osteoarticular system. But a massive bone defect remains a dilemma for modern reconstructive surgery. Present methods used have a high level of morbidity and complication. Literature indicates the absence of an optimal solution in massive bone defects healing. The aim of this study: to perform an in vivo preliminary study of vascularization of the hind limb in the rabbit model, for obtaining a graft able for further inclusion in the host blood circulation, without immunosuppression by decellularization. Material and methods: The study was performed on the 12 laboratory rabbits. After euthanasia of the rabbit, the femoral and tibiofibular bone was collected without soft tissue, only with the vascular pedicle, and keeping the passage through the vessels. In the abdominal aorta was injected contrast material, with the subsequent preparation of the arterial vessels, succeeded by anatomical, morphological, radiography, and microangiography study of this vascularized bone segment. Results: The principal nutrient artery of the rabbit femur springs from the lateral circumflex femoral artery. The optimal segment for vascularized allografting (the rabbit model) was determined the upper third of the femur with the up to the level of the internal iliac artery. So, it could be used as a bone graft for further conservation and decellularization. Conclusions: The vascularized allogeneic bone without immunosuppression would be a perfect alternative in the treatment of the massive bone defects.


2007 ◽  
Vol 330-332 ◽  
pp. 1165-1168
Author(s):  
Jin Feng Yao ◽  
Y.Z. Zhang ◽  
C.Y. Bao ◽  
L.Y. Sun ◽  
X.M. Hao ◽  
...  

The purpose of this study was to explore the feasibility of repairing massive bone defect with in vivo tissue engineering(TE) bone, and to provide experimental evidence for the application of in vivo TE bone into clinic in the future. Six calcium phosphate ceramics (Ca-P ceramics) columns were prepared, and then immersed in dynamic revised simulated body fluid (RSBF). 72 hours later, the bone-like apatite was formed on the surface and pore walls of ceramics. Three dogs were used in this study. Two ceramic columns were implanted bilaterally in the femoral muscles of each dog to construct living bone graft of in vivo TE bone. 6 weeks after implantation, they were transplanted to the box-like bone defects sites created in bilateral mandible of the same animals. The dogs were sacrificed at 8, 12 week after operation respectively. Samples were harvested for gross observation, X-ray examination, tetracycline fluorescence labeling, SPECT and histological observation. These results demonstrated that as a living bone graft, in vivo TE bone participated in the bone metabolism of host, and integrated with the host bone. It is feasible to reconstruct box-like bone defect of mandible with the in vivo TE bone.


2021 ◽  
Vol 11 (4) ◽  
pp. 1906
Author(s):  
Marwa Y. Shaheen ◽  
Amani M. Basudan ◽  
Abdurahman A. Niazy ◽  
Jeroen J. J. P. van den Beucken ◽  
John A. Jansen ◽  
...  

The aim of this study was to evaluate the regeneration of bone defects created in the femoral condyle of osteoporotic rats, following intravenous (IV) zoledronate (ZA) treatment in three settings: pre-bone grafting (ZA-Pre), post-bone grafting (ZA-Post), and pre- plus post-bone grafting (ZA-Pre+Post). Twenty-four female Wistar rats were ovariectomized (OVX). After 12 weeks, bone defects were created in the left femoral condyle. All defects were grafted with a particulate inorganic cancellous bovine bone substitute. ZA (0.04 mg/kg, weekly) was administered to six rats 4 weeks pre-bone graft placement. To another six rats, ZA was given post-bone graft placement creation and continued for 6 weeks. Additional six rats received ZA treatment pre- and post-bone graft placement. Control animals received weekly saline intravenous injections. At 6 weeks post-bone graft placement, samples were retrieved for histological evaluation of the bone area percentage (BA%) and remaining bone graft percentage (RBG%). BA% for ZA-Pre (50.1 ± 3.5%) and ZA-Post (49.2 ± 8.2%) rats was significantly increased compared to that of the controls (35.4 ± 5.4%, p-value 0.031 and 0.043, respectively). In contrast, ZA-Pre+Post rats (40.7 ± 16.0%) showed similar BA% compared to saline controls (p = 0.663). For RBG%, all experimental groups showed similar results ranging from 36.3 to 47.1%. Our data indicate that pre- or post-surgical systemic IV administration of ZA improves the regeneration of bone defects grafted with inorganic cancellous bovine-bone particles in osteoporotic bone conditions. However, no favorable effect on bone repair was seen for continued pre- plus post-surgical ZA treatment.


Injury ◽  
2015 ◽  
Vol 46 ◽  
pp. S47-S52 ◽  
Author(s):  
Taçkın Özalp ◽  
Çağlar Öz ◽  
Gürler Kale ◽  
Serkan Erkan

2015 ◽  
Vol 10 (S1) ◽  
Author(s):  
Martin Kaláb ◽  
Jan Karkoška ◽  
Milan Kamínek ◽  
Eva Matějková ◽  
Vladimír Lonský

Sign in / Sign up

Export Citation Format

Share Document