scholarly journals Antifungal benzo[b]thiophene 1,1-dioxide IMPDH inhibitors exhibit pan-assay interference (PAINS) profiles

2018 ◽  
Vol 26 (20) ◽  
pp. 5408-5419 ◽  
Author(s):  
Lalith K. Kummari ◽  
Mark S. Butler ◽  
Emily Furlong ◽  
Ross Blundell ◽  
Amanda Nouwens ◽  
...  
2019 ◽  
Author(s):  
Simon Ng ◽  
Yu-Chi Juang ◽  
Arun Chandramohan ◽  
Hung Yi Kristal Kaan ◽  
Ahmad Sadruddin ◽  
...  

AbstractDiscovery of false-positive target binding, due to assay interference or aggregation, presents a significant problem for drug discovery programs. These issues may often be unrealized and could lead researchers astray if not subject to independent verification of reproducibility and/or on-target mechanism of action. Although well-documented for small molecules, this issue has not been widely explored for peptide modality. As a case study, we demonstrate that two purported KRas inhibitors, stapled peptide SAH-SOS1A and macrocyclic peptide cyclorasin 9A5, exemplify false-positive molecules – both in terms of their sub-micromolar KRas binding affinities and their on-target cellular activities. We observed that the apparent binding of fluorescein-labeled SAH-SOS1A given by a fluorescence polarization assay is sensitive to detergent. False-positive readouts can arise from peptide adsorption to the surface of microplates. Hence, we used surface plasmon resonance and isothermal titration calorimetry to unambiguously show that both SAH-SOS1A and cyclorasin 9A5 are non-binders for KRas. Thermal shift assay and hydrogen-deuterium exchange mass spectrometry further demonstrate that both peptides destabilize KRas and induce unfolding of the protein. Furthermore, both peptides caused significant release of intracellular lactate dehydrogenase, suggesting that membrane rupture rather than on-target activity is accountable for their reported cytotoxicity. Finally, both peptides exhibited off-target activities by inhibiting the proliferation of U-2 OS and A549 cells, despite their independency of the KRas signaling pathway. Our findings demonstrate the critical need to employ orthogonal binding assays and cellular counter-screens to de-risk false-positive molecules. More rigorous workflows should lead to improved data and help obviate inadvertent scientific conclusions.Significance statementFalse positive molecule hits occur frequently in high-throughput screens and can contaminate the scientific literature. This has become an increasingly serious issue in small molecule drug discovery and chemical probe development and it is not surprising that peptides may be similarly prone to assay interference. Using KRas as a target and two known macrocyclic peptide inhibitors as a case study, we clearly show that reporter-free biophysical assays and cellular counter-screens offer the solution to detect and de-risk the potential of false-positive compounds. We further discuss the advantages, limitations and overall strategic importance of such methods.


2018 ◽  
Vol 56 (2) ◽  
pp. 312-322 ◽  
Author(s):  
Joannes F.M. Jacobs ◽  
Corrie M. de Kat Angelino ◽  
Huberdina M.L.M. Brouwers ◽  
Sandra A. Croockewit ◽  
Irma Joosten ◽  
...  

Abstract Background: Serum free light chain (sFLC) measurements are increasingly important in the context of screening for monoclonal gammopathies, prognostic stratification, and monitoring of therapy responses. At the same time, analytical limitations have been reported with the currently available nephelometric and turbidimetric sFLC assays. We have evaluated a new quantitative sFLC ELISA for its suitability in routine clinical use. Methods: Reference ranges of the Sebia FLC assay were calculated from 208 controls. Assay interference, reproducibility, lot-to-lot variability, and linearity were assessed. Method comparison to the Freelite assay (Binding Site) was conducted by retrospective analysis of 501 patient sera. Results: Reference ranges of the Sebia κ/λFLC-ratio were 0.37–1.44. We observed good sensitivity (1.5 mg/L) and linearity in both polyclonal and monoclonal sFLC samples and never experienced antigen excess. Sebia FLC reproducibility varied between 6.7% and 8.1% with good lot-to-lot consistency. Method comparison with Freelite showed the following correlations: κFLC R=0.94, λFLC R=0.92 and κ/λFLC-ratio R=0.96. The clinical concordance of the κ/λFLC-ratio of both methods was 94%. Significant quantitative differences were observed between both methods, mainly in sera with high FLC concentrations. The Sebia monoclonal FLC concentrations were coherent with those obtained by serum protein electrophoresis (SPE). Freelite monoclonal FLC concentrations were consistently higher, with a mean 12-fold overestimation compared to SPE. Conclusions: The Sebia FLC assay provides a novel platform for sensitive and accurate sFLC measurements. The Sebia FLC showed good clinical concordance with Freelite. Further studies are warranted to confirm the clinical value of this assay.


2018 ◽  
Vol 23 (6) ◽  
pp. 532-545 ◽  
Author(s):  
Subhas J. Chakravorty ◽  
James Chan ◽  
Marie Nicole Greenwood ◽  
Ioana Popa-Burke ◽  
Katja S. Remlinger ◽  
...  

High-throughput screening (HTS) hits include compounds with undesirable properties. Many filters have been described to identify such hits. Notably, pan-assay interference compounds (PAINS) has been adopted by the community as the standard term to refer to such filters, and very useful guidelines have been adopted by the American Chemical Society (ACS) and subsequently triggered a healthy scientific debate about the pitfalls of draconian use of filters. Using an inhibitory frequency index, we have analyzed in detail the promiscuity profile of the whole GlaxoSmithKline (GSK) HTS collection comprising more than 2 million unique compounds that have been tested in hundreds of screening assays. We provide a comprehensive analysis of many previously published filters and newly described classes of nuisance structures that may serve as a useful source of empirical information to guide the design or growth of HTS collections and hit triaging strategies.


MedChemComm ◽  
2017 ◽  
Vol 8 (6) ◽  
pp. 1220-1224 ◽  
Author(s):  
Hamid R. Nasiri ◽  
Philipp Mracek ◽  
Steffen K. Grimm ◽  
Janine Gastaldello ◽  
Adrian Kolodzik ◽  
...  

A miniaturized assay was set up to test a set of natural products against protein tyrosine phosphatase 1B (PTP1B). By using several read-out and counter assays, berberine and palmatine were identified as PAINS (pan-assay interference compounds) and α-TOS as a novel inhibitor of PTP1B.


Sign in / Sign up

Export Citation Format

Share Document