Faculty Opinions recommendation of Machine Learning Distinguishes with High Accuracy between Pan-Assay Interference Compounds That Are Promiscuous or Represent Dark Chemical Matter.

Author(s):  
John Lowe
Author(s):  
Jonas Austerjost ◽  
Robert Söldner ◽  
Christoffer Edlund ◽  
Johan Trygg ◽  
David Pollard ◽  
...  

Machine vision is a powerful technology that has become increasingly popular and accurate during the last decade due to rapid advances in the field of machine learning. The majority of machine vision applications are currently found in consumer electronics, automotive applications, and quality control, yet the potential for bioprocessing applications is tremendous. For instance, detecting and controlling foam emergence is important for all upstream bioprocesses, but the lack of robust foam sensing often leads to batch failures from foam-outs or overaddition of antifoam agents. Here, we report a new low-cost, flexible, and reliable foam sensor concept for bioreactor applications. The concept applies convolutional neural networks (CNNs), a state-of-the-art machine learning system for image processing. The implemented method shows high accuracy for both binary foam detection (foam/no foam) and fine-grained classification of foam levels.


Nanoscale ◽  
2021 ◽  
Author(s):  
Hao Zhou ◽  
Ya-Juan Feng ◽  
Chao Wang ◽  
Teng Huang ◽  
Yi-Rong Liu ◽  
...  

Water, the most important molecule on the Earth, possesses many essential and unique physical properties that are far from completely understood, partly due to serious difficulties in identifying the precise...


Author(s):  
Anna Evgenievna Kharitonova ◽  
Alina Alekseevna Sundupey ◽  
Svetlana Skachkova

The article provides a comparative analysis of the results of the Russian Agricultural Census of 2006 and 2016. As a result, there is a decrease in the number of agricultural producers, a decrease in the size of agricultural land and equipment in organizations. Against this background, one can see an increase in the concentration of production in both crop and livestock production. Machine learning models have been built to classify subsidy organizations using Python libraries. The accuracy of the constructed models was up to 86 %, which proves the possibility of their use. In the future, the use of machine learning methods will reduce the number of Russian agricultural census indicators and classify organizations with high accuracy according to qualitative characteristics.


2021 ◽  
Author(s):  
Wael Alnahari

Abstract In this paper, I proposed an iris recognition system by using deep learning via neural networks (CNN). Although CNN is used for machine learning, the recognition is achieved by building a non-trained CNN network with multiple layers. The main objective of the code the test pictures’ category (aka person name) with a high accuracy rate after having extracted enough features from training pictures of the same category which are obtained from a that I added to the code. I used IITD iris which included 10 iris pictures for 223 people.


2019 ◽  
Author(s):  
Zhenzhen Du ◽  
Yujie Yang ◽  
Jing Zheng ◽  
Qi Li ◽  
Denan Lin ◽  
...  

BACKGROUND Predictions of cardiovascular disease risks based on health records have long attracted broad research interests. Despite extensive efforts, the prediction accuracy has remained unsatisfactory. This raises the question as to whether the data insufficiency, statistical and machine-learning methods, or intrinsic noise have hindered the performance of previous approaches, and how these issues can be alleviated. OBJECTIVE Based on a large population of patients with hypertension in Shenzhen, China, we aimed to establish a high-precision coronary heart disease (CHD) prediction model through big data and machine-learning METHODS Data from a large cohort of 42,676 patients with hypertension, including 20,156 patients with CHD onset, were investigated from electronic health records (EHRs) 1-3 years prior to CHD onset (for CHD-positive cases) or during a disease-free follow-up period of more than 3 years (for CHD-negative cases). The population was divided evenly into independent training and test datasets. Various machine-learning methods were adopted on the training set to achieve high-accuracy prediction models and the results were compared with traditional statistical methods and well-known risk scales. Comparison analyses were performed to investigate the effects of training sample size, factor sets, and modeling approaches on the prediction performance. RESULTS An ensemble method, XGBoost, achieved high accuracy in predicting 3-year CHD onset for the independent test dataset with an area under the receiver operating characteristic curve (AUC) value of 0.943. Comparison analysis showed that nonlinear models (K-nearest neighbor AUC 0.908, random forest AUC 0.938) outperform linear models (logistic regression AUC 0.865) on the same datasets, and machine-learning methods significantly surpassed traditional risk scales or fixed models (eg, Framingham cardiovascular disease risk models). Further analyses revealed that using time-dependent features obtained from multiple records, including both statistical variables and changing-trend variables, helped to improve the performance compared to using only static features. Subpopulation analysis showed that the impact of feature design had a more significant effect on model accuracy than the population size. Marginal effect analysis showed that both traditional and EHR factors exhibited highly nonlinear characteristics with respect to the risk scores. CONCLUSIONS We demonstrated that accurate risk prediction of CHD from EHRs is possible given a sufficiently large population of training data. Sophisticated machine-learning methods played an important role in tackling the heterogeneity and nonlinear nature of disease prediction. Moreover, accumulated EHR data over multiple time points provided additional features that were valuable for risk prediction. Our study highlights the importance of accumulating big data from EHRs for accurate disease predictions.


2018 ◽  
Vol 23 (6) ◽  
pp. 532-545 ◽  
Author(s):  
Subhas J. Chakravorty ◽  
James Chan ◽  
Marie Nicole Greenwood ◽  
Ioana Popa-Burke ◽  
Katja S. Remlinger ◽  
...  

High-throughput screening (HTS) hits include compounds with undesirable properties. Many filters have been described to identify such hits. Notably, pan-assay interference compounds (PAINS) has been adopted by the community as the standard term to refer to such filters, and very useful guidelines have been adopted by the American Chemical Society (ACS) and subsequently triggered a healthy scientific debate about the pitfalls of draconian use of filters. Using an inhibitory frequency index, we have analyzed in detail the promiscuity profile of the whole GlaxoSmithKline (GSK) HTS collection comprising more than 2 million unique compounds that have been tested in hundreds of screening assays. We provide a comprehensive analysis of many previously published filters and newly described classes of nuisance structures that may serve as a useful source of empirical information to guide the design or growth of HTS collections and hit triaging strategies.


2021 ◽  
Author(s):  
Inger Persson ◽  
Andreas Östling ◽  
Martin Arlbrandt ◽  
Joakim Söderberg ◽  
David Becedas

BACKGROUND Despite decades of research, sepsis remains a leading cause of mortality and morbidity in ICUs worldwide. The key to effective management and patient outcome is early detection, where no prospectively validated machine learning prediction algorithm is available for clinical use in Europe today. OBJECTIVE To develop a high-performance machine learning sepsis prediction algorithm based on routinely collected ICU data, designed to be implemented in Europe. METHODS The machine learning algorithm is developed using Convolutional Neural Network, based on the Massachusetts Institute of Technology Lab for Computational Physiology MIMIC-III Clinical Database, focusing on ICU patients aged 18 years or older. Twenty variables are used for prediction, on an hourly basis. Onset of sepsis is defined in accordance with the international Sepsis-3 criteria. RESULTS The developed algorithm NAVOY Sepsis uses 4 hours of input and can with high accuracy predict patients with high risk of developing sepsis in the coming hours. The prediction performance is superior to that of existing sepsis early warning scoring systems, and competes well with previously published prediction algorithms designed to predict sepsis onset in accordance with the Sepsis-3 criteria, as measured by the area under the receiver operating characteristics curve (AUROC) and the area under the precision-recall curve (AUPRC). NAVOY Sepsis yields AUROC = 0.90 and AUPRC = 0.62 for predictions up to 3 hours before sepsis onset. The predictive performance is externally validated on hold-out test data, where NAVOY Sepsis is confirmed to predict sepsis with high accuracy. CONCLUSIONS An algorithm with excellent predictive properties has been developed, based on variables routinely collected at ICUs. This algorithm is to be further validated in an ongoing prospective randomized clinical trial and will be CE marked as Software as a Medical Device, designed for commercial use in European ICUs.


Sign in / Sign up

Export Citation Format

Share Document