scholarly journals NaQuinate selectively synergises with in vivo mechanical loading stimuli to enhance cortical bone mass and architectural modifications

Bone Reports ◽  
2021 ◽  
Vol 14 ◽  
pp. 100885
Author(s):  
Behzad Javaheri ◽  
Amy Lock ◽  
Mark Hopkinson ◽  
Samuel Monzem ◽  
Yu-Mei Chang ◽  
...  
2014 ◽  
Vol 306 (5) ◽  
pp. F517-F524 ◽  
Author(s):  
Jürg A. Gasser ◽  
Henry N. Hulter ◽  
Peter Imboden ◽  
Reto Krapf

Chronic metabolic acidosis (CMA) might result in a decrease in vivo in bone mass based on its reported in vitro inhibition of bone mineralization, bone formation, or stimulation of bone resorption, but such data, in the absence of other disorders, have not been reported. CMA also results in negative nitrogen balance, which might decrease skeletal muscle mass. This study analyzed the net in vivo effects of CMA's cellular and physicochemical processes on bone turnover, trabecular and cortical bone density, and bone microarchitecture using both peripheral quantitative computed tomography and μCT. CMA induced by NH4Cl administration (15 mEq/kg body wt/day) in intact and ovariectomized (OVX) rats resulted in stable CMA (mean Δ[HCO3−]p = 10 mmol/l). CMA decreased plasma osteocalcin and increased TRAP5b in intact and OVX animals. CMA decreased total volumetric bone mineral density (vBMD) after 6 and 10 wk ( week 10: intact normal +2.1 ± 0.9% vs. intact acidosis −3.6 ± 1.2%, P < 0.001), an effect attributable to a decrease in cortical thickness and, thus, cortical bone mass (no significant effect on cancellous vBMD, week 10) attributed to an increase in endosteal bone resorption (nominally increased endosteal circumference). Trabecular bone volume (BV/TV) decreased significantly in both CMA groups at 6 and 10 wk, associated with a decrease in trabecular number. CMA significantly decreased muscle cross-sectional area in the proximal hindlimb at 6 and 10 wk. In conclusion, chronic metabolic acidosis induces a large decrease in cortical bone mass (a prime determinant of bone fragility) in intact and OVX rats and impairs bone microarchitecture characterized by a decrease in trabecular number.


2010 ◽  
Vol 9 (6) ◽  
pp. 737-747 ◽  
Author(s):  
Duncan Webster ◽  
Elad Wasserman ◽  
Martin Ehrbar ◽  
Franz Weber ◽  
Itai Bab ◽  
...  

2017 ◽  
Author(s):  
Rachel L Duckham ◽  
Timo Rantalainen ◽  
Christine Rodda ◽  
Anna Timperio ◽  
Nicola Hawley ◽  
...  

Endocrinology ◽  
2003 ◽  
Vol 144 (5) ◽  
pp. 2132-2140 ◽  
Author(s):  
Keiichiro Kitahara ◽  
Muneaki Ishijima ◽  
Susan R. Rittling ◽  
Kunikazu Tsuji ◽  
Hisashi Kurosawa ◽  
...  

Intermittent PTH treatment increases cancellous bone mass in osteoporosis patients; however, it reveals diverse effects on cortical bone mass. Underlying molecular mechanisms for anabolic PTH actions are largely unknown. Because PTH regulates expression of osteopontin (OPN) in osteoblasts, OPN could be one of the targets of PTH in bone. Therefore, we examined the role of OPN in the PTH actions in bone. Intermittent PTH treatment neither altered whole long-bone bone mineral density nor changed cortical bone mass in wild-type 129 mice, although it enhanced cancellous bone volume as reported previously. In contrast, OPN deficiency induced PTH enhancement of whole-bone bone mineral density as well as cortical bone mass. Strikingly, although PTH suppressed periosteal bone formation rate (BFR) and mineral apposition rate (MAR) in cortical bone in wild type, OPN deficiency induced PTH activation of periosteal BFR and MAR. In cancellous bone, OPN deficiency further enhanced PTH increase in BFR and MAR. Analysis on the cellular bases for these phenomena indicated that OPN deficiency augmented PTH enhancement in the increase in mineralized nodule formation in vitro. OPN deficiency did not alter the levels of PTH enhancement of the excretion of deoxypyridinoline in urine, the osteoclast number in vivo, and tartrate-resistant acid phosphatase-positive cell development in vitro. These observations indicated that OPN deficiency specifically induces PTH activation of periosteal bone formation in the cortical bone envelope.


1997 ◽  
Vol 12 (4) ◽  
pp. 590-597 ◽  
Author(s):  
Hiroaki Fuse ◽  
Seiji Fukumoto ◽  
Hideyuki Sone ◽  
Yoshiko Miyata ◽  
Tomoyuki Saito ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document