How to best estimate the viscosity of lipid bilayers

2021 ◽  
pp. 106732
Author(s):  
Vladimir Adrien ◽  
Gamal Rayan ◽  
Ksenia Astafyeva ◽  
Isabelle Broutin ◽  
Martin Picard ◽  
...  
Keyword(s):  
Author(s):  
Neng-Bo He ◽  
S.W. Hui

Monolayers and planar "black" lipid membranes have been widely used as models for studying the structure and properties of biological membranes. Because of the lack of a suitable method to prepare these membranes for electron microscopic observation, their ultrastructure is so far not well understood. A method of forming molecular bilayers over the holes of fine mesh grids was developed by Hui et al. to study hydrated and unsupported lipid bilayers by electron diffraction, and to image phase separated domains by diffraction contrast. We now adapted the method of Pattus et al. of spreading biological membranes vesicles on the air-water interfaces to reconstitute biological membranes into unsupported planar films for electron microscopic study. hemoglobin-free human erythrocyte membrane stroma was prepared by hemolysis. The membranes were spreaded at 20°C on balanced salt solution in a Langmuir trough until a surface pressure of 20 dyne/cm was reached. The surface film was repeatedly washed by passing to adjacent troughs over shallow partitions (fig. 1).


Author(s):  
S. Kirchanski ◽  
D. Branton

We have investigated the effect of integral membrane proteins upon the fracturing of frozen lipid bilayers. This investigation has been part of an effort to develop freeze fracture labeling techniques and to assess the possible breakage of covalent protein bonds during the freeze fracture process. We have developed an experimental protocol utilizing lectin affinity columns which should detect small amounts of covalent bond breakage during the fracture of liposomes containing purified (1) glycophorin (a transmembrane glycoprotein of human erythrocyte membranes). To fracture liposomes in bulk, frozen liposomes are ground repeatedly under liquid nitrogen. Failure to detect any significant covalent bond breakage (contrary to (2)) led us to question the effectiveness of our grinding procedure in fracturing and splitting lipid bilayers.


1997 ◽  
Vol 7 (9) ◽  
pp. 1185-1204 ◽  
Author(s):  
J. L. Coveas ◽  
S. T. Milner ◽  
W. B. Russel
Keyword(s):  

2020 ◽  
Vol 4 (3) ◽  
pp. 150-155 ◽  
Author(s):  
Md. Mehadi Hasan Sohag ◽  
Olivier Nicoud ◽  
Racha Amine ◽  
Abir Khalil-Mgharbel ◽  
Jean-Pierre Alcaraz ◽  
...  

AbstractThe goal of this study was to determine whether the Tethapod system, which was designed to determine the impedance properties of lipid bilayers, could be used for cell culture in order to utilise micro-impedance spectroscopy to examine further biological applications. To that purpose we have used normal epithelial cells from kidney (RPTEC) and a kidney cancer cell model (786-O). We demonstrate that the Tethapod system is compatible with the culture of 10,000 cells seeded to grow on a small area gold measurement electrode for several days without affecting the cell viability. Furthermore, the range of frequencies for EIS measurements were tuned to examine easily the characteristics of the cell monolayer. We demonstrate significant differences in the paracellular resistance pathway between normal and cancer kidney epithelial cells. Thus, we conclude that this device has advantages for the study of cultured cells that include (i) the configuration of measurement and reference electrodes across a microfluidic channel, and (ii) the small surface area of 6 parallel measurement electrodes (2.1 mm2) integrated in a microfluidic system. These characteristics might improve micro-impedance spectroscopy measurement techniques to provide a simple tool for further studies in the field of the patho-physiology of biological barriers.


2019 ◽  
Author(s):  
HanByul Chang ◽  
Paul Ohno ◽  
Yangdongling Liu ◽  
Franz Geiger

We report the detection of charge reversal induced by the adsorption of a cationic polyelectrolyte, poly(allylamine) hydrochloride (PAH), to buried supported lipid bilayers (SLBs), used as idealized model biological membranes. We observe changes in the surface potential in isolation from other contributors to the total SHG response by extracting the phase-shifted potential-dependent third-order susceptibility from the overall SHG signal. We demonstrate the utility of this technique in detecting both the sign of the surface potential and the point of charge reversal at buried interfaces without any prior information or complementary techniques<i>.</i>Furthermore, isolation of the second-order susceptibility contribution from the overall SHG response allows us to directly monitor changes in the Stern Layer. Finally, we characterize the Stern and Diffuse Layers over single-component SLBs formed from three different zwitterionic lipids of different gel-to-fluid phase transition temperatures (T<sub>m</sub>s). We determine whether the surface potential changes with the physical phase state (gel, transitioning, or fluid) of the SLB and incorporate 20 percent of negatively charged lipids to the zwitterionic SLB to investigate how the surface potential changes with surface charge.


2018 ◽  
Author(s):  
Luke Jordan ◽  
Nathan Wittenberg

This is a comprehensive study of the effects of the four major brain gangliosides (GM1, GD1b, GD1a, and GT1b) on the adsorption and rupture of phospholipid vesicles on SiO2 surfaces for the formation of supported lipid bilayer (SLB) membranes. Using quartz crystal microbalance with dissipation monitoring (QCM-D) we show that gangliosides GD1a and GT1b significantly slow the SLB formation process, whereas GM1 and GD1b have smaller effects. This is likely due to the net ganglioside charge as well as the positions of acidic sugar groups on ganglioside glycan head groups. Data is included that shows calcium can accelerate the formation of ganglioside-rich SLBs. Using fluorescence recovery after photobleaching (FRAP) we also show that the presence of gangliosides significantly reduces lipid diffusion coefficients in SLBs in a concentration-dependent manner. Finally, using QCM-D and GD1a-rich SLB membranes we measure the binding kinetics of an anti-GD1a antibody that has similarities to a monoclonal antibody that is a hallmark of a variant of Guillain-Barre syndrome.


2019 ◽  
Vol 25 (6) ◽  
pp. 879-884
Author(s):  
Takahiro Sakai ◽  
Hayato Seki ◽  
Shogo Yoshida ◽  
Hayato Hori ◽  
Hisashi Suzuki ◽  
...  

Kerntechnik ◽  
2010 ◽  
Vol 75 (3) ◽  
pp. 72-80 ◽  
Author(s):  
A. Marao ◽  
T. Kaliatka ◽  
A. Kaliatka ◽  
E. Ušpuras

Sign in / Sign up

Export Citation Format

Share Document