scholarly journals NMR Structural Studies of Membrane Proteins in Lipid Micelles and Lipid Bilayers

2010 ◽  
Vol 98 (3) ◽  
pp. 209a
Author(s):  
Francesca M. Marassi
Author(s):  
Kevin J Crowell ◽  
Carla M Franzin ◽  
Anita Koltay ◽  
Sangmin Lee ◽  
Anna Maria Lucchese ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shanwen Zhang ◽  
Qian Ren ◽  
Scott J. Novick ◽  
Timothy S. Strutzenberg ◽  
Patrick R. Griffin ◽  
...  

AbstractCircularized nandiscs (cNDs) exhibit superb monodispersity and have the potential to transform functional and structural studies of membrane proteins. In particular, cNDs can stabilize large patches of lipid bilayers for the reconstitution of complex membrane biochemical reactions, enabling the capture of crucial intermediates involved in synaptic transmission and viral entry. However, previous methods for building cNDs require multiple steps and suffer from low yields. We herein introduce a simple, one-step approach to ease the construction of cNDs using the SpyCatcher-SpyTag technology. This approach increases the yield of cNDs by over 10-fold and is able to rapidly generates cNDs with diameters ranging from 11 to over 100 nm. We demonstrate the utility of these cNDs for mechanistic interrogations of vesicle fusion and protein-lipid interactions that are unattainable using small nanodiscs. Together, the remarkable performance of SpyCatcher-SpyTag in nanodisc circularization paves the way for the use of cNDs in membrane biochemistry and structural biology.


2000 ◽  
Vol 56 (s1) ◽  
pp. s83-s83
Author(s):  
P. Nollert ◽  
M. L. Chiu ◽  
M. C. Loewen ◽  
A. Royant ◽  
H. Behrhali ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 562
Author(s):  
Miliça Ristovski ◽  
Danny Farhat ◽  
Shelly Ellaine M. Bancud ◽  
Jyh-Yeuan Lee

Lipid composition in cellular membranes plays an important role in maintaining the structural integrity of cells and in regulating cellular signaling that controls functions of both membrane-anchored and cytoplasmic proteins. ATP-dependent ABC and P4-ATPase lipid transporters, two integral membrane proteins, are known to contribute to lipid translocation across the lipid bilayers on the cellular membranes. In this review, we will highlight current knowledge about the role of cholesterol and phospholipids of cellular membranes in regulating cell signaling and how lipid transporters participate this process.


Langmuir ◽  
2008 ◽  
Vol 24 (14) ◽  
pp. 7378-7387 ◽  
Author(s):  
Izabella Zawisza ◽  
Martina Nullmeier ◽  
Sascha E. Pust ◽  
Rabah Boukherroub ◽  
Sabine Szunerits ◽  
...  

Author(s):  
Jan Zaucha ◽  
Michael Heinzinger ◽  
A Kulandaisamy ◽  
Evans Kataka ◽  
Óscar Llorian Salvádor ◽  
...  

Abstract Membrane proteins are unique in that they interact with lipid bilayers, making them indispensable for transporting molecules and relaying signals between and across cells. Due to the significance of the protein’s functions, mutations often have profound effects on the fitness of the host. This is apparent both from experimental studies, which implicated numerous missense variants in diseases, as well as from evolutionary signals that allow elucidating the physicochemical constraints that intermembrane and aqueous environments bring. In this review, we report on the current state of knowledge acquired on missense variants (referred to as to single amino acid variants) affecting membrane proteins as well as the insights that can be extrapolated from data already available. This includes an overview of the annotations for membrane protein variants that have been collated within databases dedicated to the topic, bioinformatics approaches that leverage evolutionary information in order to shed light on previously uncharacterized membrane protein structures or interaction interfaces, tools for predicting the effects of mutations tailored specifically towards the characteristics of membrane proteins as well as two clinically relevant case studies explaining the implications of mutated membrane proteins in cancer and cardiomyopathy.


Sign in / Sign up

Export Citation Format

Share Document