scholarly journals Intracellular Diffusion in Fission Yeast Cells Depends on Cell Cycle Stage

2010 ◽  
Vol 98 (3) ◽  
pp. 369a
Author(s):  
Christine Selhuber-Unkel ◽  
Pernille Yde ◽  
Kirstine Berg-Sørensen ◽  
Lene Oddershede
2011 ◽  
Vol 100 (3) ◽  
pp. 89a ◽  
Author(s):  
Allan Long ◽  
Anna Manneschmidt ◽  
Rose Dortch ◽  
Robert Verbruggie ◽  
Paul Dalhaimer

2002 ◽  
Vol 115 (2) ◽  
pp. 421-431
Author(s):  
Anna Matynia ◽  
Sandra S. Salus ◽  
Shelley Sazer

The Ran GTPase is an essential protein that has multiple functions in eukaryotic cells. Fission yeast cells in which Ran is misregulated arrest after mitosis with condensed, unreplicated chromosomes and abnormal nuclear envelopes. The fission yeast sns mutants arrest with a similar cell cycle block and interact genetically with the Ran system. sns-A10, sns-B2 and sns-B9 have mutations in the fission yeast homologues of S. cerevisiae Sar1p, Sec31p and Sec53p, respectively, which are required for the early steps of the protein secretory pathway. The three sns mutants accumulate a normally secreted protein in the endoplasmic reticulum (ER), have an increased amount of ER membrane, and the ER/nuclear envelope lumen is dilated. Neither a post-ER block in the secretory pathway, nor ER proliferation caused by overexpression of an integral ER membrane protein, results in a cell cycle-specific defect. Therefore, the arrest seen in sns-A10, sns-B2 and sns-B9 is most likely due to nuclear envelope defects that render the cells unable to re-establish the interphase organization of the nucleus after mitosis. As a consequence, these mutants are unable to decondense their chromosomes or to initiate of the next round of DNA replication.


PLoS ONE ◽  
2011 ◽  
Vol 6 (2) ◽  
pp. e17175 ◽  
Author(s):  
Jon Halvor Jonsrud Knutsen ◽  
Idun Dale Rein ◽  
Christiane Rothe ◽  
Trond Stokke ◽  
Beáta Grallert ◽  
...  

2013 ◽  
Vol 24 (12) ◽  
pp. 1872-1881 ◽  
Author(s):  
Lin Deng ◽  
James B. Moseley

Cell cycle progression is coupled to cell growth, but the mechanisms that generate growth-dependent cell cycle progression remain unclear. Fission yeast cells enter into mitosis at a defined size due to the conserved cell cycle kinases Cdr1 and Cdr2, which localize to a set of cortical nodes in the cell middle. Cdr2 is regulated by the cell polarity kinase Pom1, suggesting that interactions between cell polarity proteins and the Cdr1-Cdr2 module might underlie the coordination of cell growth and division. To identify the molecular connections between Cdr1/2 and cell polarity, we performed a comprehensive pairwise yeast two-hybrid screen. From the resulting interaction network, we found that the protein Skb1 interacted with both Cdr1 and the Cdr1 inhibitory target Wee1. Skb1 inhibited mitotic entry through negative regulation of Cdr1 and localized to both the cytoplasm and a novel set of cortical nodes. Skb1 nodes were distinct structures from Cdr1/2 nodes, and artificial targeting of Skb1 to Cdr1/2 nodes delayed entry into mitosis. We propose that the formation of distinct node structures in the cell cortex controls signaling pathways to link cell growth and division.


1990 ◽  
Vol 187 (1) ◽  
pp. 150-156 ◽  
Author(s):  
Minoru Yoshida ◽  
Mitsuo Nishikawa ◽  
Kazunori Nishi ◽  
Keiichi Abe ◽  
Sueharu Horinouchi ◽  
...  

2018 ◽  
Author(s):  
Mary Pickering ◽  
Lauren Nicole Hollis ◽  
Edridge D’Souza ◽  
Nicholas Rhind

ABSTRACTHow the rate of cell growth is influenced by cell size is a fundamental question of cell biology. The simple model that cell growth is proportional to cell size, based on the proposition that larger cells have proportionally greater synthetic capacity than smaller cells, leads to the predication that the rate of cell growth increases exponentially with cell size. However, other modes of cell growth, including bilinear growth, have been reported. The distinction between exponential and bilinear growth has been explored in particular detail in the fission yeast Schizosaccharomyces pombe. We have revisited the mode of fission yeast cell growth using high-resolution time-lapse microscopy and find, as previously reported, that these two growth models are difficult to distinguish both because of the similarity in shapes between exponential and bilinear curves over the two-fold change in length of a normal cell cycle and because of the substantial biological and experimental noise inherent to these experiments. Therefore, we contrived to have cells grow more than two fold, by holding them in G2 for up to eight hours. Over this extended growth period, in which cells grow up to 5.5-fold, the two growth models diverge to the point that we can confidently exclude bilinear growth as a general model for fission yeast growth. Although the growth we observe is clearly more complicated than predicted by simple exponential growth, we find that exponential growth is a robust approximation of fission yeast growth, both during an unperturbed cell cycle and during extended periods of growth.


1979 ◽  
Vol 35 (1) ◽  
pp. 41-51
Author(s):  
A. Barnes ◽  
P. Nurse ◽  
R.S. Fraser

Mutant strains of the fission yeast Schizosaccharomyces pombe are available which divide at smaller mean sizes than wild type. Earlier work by the present authors has shown that all these strains double their rates of polyadenylated messenger RNA synthesis as a step once in each cell cycle. The smaller the cell, the later in the cycle is the doubling in rate of synthesis. Strains of all sizes, however, double their synthetic rate when at the same threshold size. We show here that the differences in cell cycle stage of doubling in rate of polyadenylated messenger RNA synthesis are enough to explain the reduced mean steady state polyadenylated messenger RNA contents of the smaller strains. The cell size-related control over doubling in rate of synthesis is also shown to maintain the mean polyadenylated messenger RNA content as a constant proportion of cell mass, irrespective of cell size. This control thus allows cells to maintain balanced exponential growth, even when absolute growth rate per cell is altered by mutation. It is also shown that the concentration of polyadenylated messenger RNA itself could act as a monitor of the threshold size triggering the doubling in rate of synthesis in each cell cycle.


2009 ◽  
Vol 87 (5) ◽  
pp. 747-758 ◽  
Author(s):  
Bettina A. Moser ◽  
Toru M. Nakamura

Telomeres, the natural ends of linear chromosomes, must be protected and completely replicated to guarantee genomic stability in eukaryotic cells. However, the protected state of telomeres is not compatible with recruitment of telomerase, an enzyme responsible for extending telomeric G-rich repeats during S-phase; thus, telomeres must undergo switches from a protected state to an accessible state during the cell cycle. In this minireview, we will summarize recent advances in our understanding of proteins involved in the protection and replication of telomeres, and the way these factors are dynamically recruited to telomeres during the cell cycle. We will focus mainly on recent results from fission yeast Schizosaccharomyces pombe , and compare them with results from budding yeast Saccharomyces cerevisiae and mammalian cell studies. In addition, a model for the way in which fission yeast cells replicate telomeres will be presented.


2000 ◽  
Vol 20 (11) ◽  
pp. 4016-4027 ◽  
Author(s):  
Maureen McLeod ◽  
Boris Shor ◽  
Anthony Caporaso ◽  
Wei Wang ◽  
Hua Chen ◽  
...  

ABSTRACT The Schizosaccharomyces pombe ran1/pat1 gene regulates the transition between mitosis and meiosis. Inactivation of Ran1 (Pat1) kinase is necessary and sufficient for cells to exit the cell cycle and undergo meiosis. The yeast two-hybrid interaction trap was used to identify protein partners for Ran1/Pat1. Here we report the identification of one of these, Cpc2. Cpc2 encodes a homologue of RACK1, a WD protein with homology to the β subunit of heterotrimeric G proteins. RACK1 is a highly conserved protein, although its function remains undefined. In mammalian cells, RACK1 physically associates with some signal transduction proteins, including Src and protein kinase C. Fission yeast cells containing a cpc2 null allele are viable but cell cycle delayed. cpc2Δ cells fail to accumulate in G1 when starved of nitrogen. This leads to defects in conjugation and meiosis. Copurification studies show that although Cpc2 and Ran1 (Pat1) physically associate, Cpc2 does not alter Ran1 (Pat1) kinase activity in vitro. Using a Ran1 (Pat1) fusion to green fluorescent protein, we show that localization of the kinase is impaired in cpc2Δ cells. Thus, in parallel with the proposed role of RACK1 in mammalian cells, fission yeast cpc2 may function as an anchoring protein for Ran1 (Pat1) kinase. All defects associated with loss of cpc2 are reversed in cells expressing mammalian RACK1, demonstrating that the fission yeast and mammalian gene products are indeed functional homologues.


Sign in / Sign up

Export Citation Format

Share Document