scholarly journals Fast Real-Time Computation of Na Channel Kinetic Models for Dynamic Clamp

2010 ◽  
Vol 98 (3) ◽  
pp. 112a
Author(s):  
Lorin S. Milescu
2012 ◽  
Vol 78 (15) ◽  
pp. 5305-5312 ◽  
Author(s):  
Jacob Bælum ◽  
Emmanuel Prestat ◽  
Maude M. David ◽  
Bjarne W. Strobel ◽  
Carsten S. Jacobsen

ABSTRACTMineralization potentials, rates, and kinetics of the three phenoxy acid (PA) herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA), and 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP), were investigated and compared in 15 soils collected from five continents. The mineralization patterns were fitted by zero/linear or exponential growth forms of the three-half-order models and by logarithmic (log), first-order, or zero-order kinetic models. Prior and subsequent to the mineralization event,tfdAgenes were quantified using real-time PCR to estimate the genetic potential for degrading PA in the soils. In 25 of the 45 mineralization scenarios, ∼60% mineralization was observed within 118 days. Elevated concentrations oftfdAin the range 1 × 105to 5 × 107gene copies g−1of soil were observed in soils where mineralization could be described by using growth-linked kinetic models. A clear trend was observed that the mineralization rates of the three PAs occurred in the order 2,4-D > MCPA > MCPP, and a correlation was observed between rapid mineralization and soils exposed to PA previously. Finally, for 2,4-D mineralization, all seven mineralization patterns which were best fitted by the exponential model yielded a highertfdAgene potential after mineralization had occurred than the three mineralization patterns best fitted by the Lin model.


2019 ◽  
Vol 99 ◽  
pp. 106595
Author(s):  
Brian K. Panama ◽  
Mark W. Nowak ◽  
Brandon Franks ◽  
Leigh Korbel ◽  
Sanjot Singh ◽  
...  

2019 ◽  
Author(s):  
G. Dumas ◽  
Q. Moreau ◽  
E. Tognoli ◽  
J.A.S. Kelso

AbstractHow does the brain allow us to interact with others, and above all how does it handle situations when the goals of the interactors overlap (i.e. cooperation) or differ (i.e. competition)? Social neuroscience has already provided some answers to these questions but has tended to treat high-level, cognitive interpretations of social behavior separately from the sensorimotor mechanisms upon which they rely. The goal here is to identify the underlying neural processes and mechanisms linking sensorimotor coordination and intention attribution. We combine the Human Dynamic Clamp (HDC), a novel paradigm for studying realistic social behavior between self and other in well-controlled laboratory conditions, with high resolution electroencephalography (EEG). The collection of humanness and intention attribution reports, kinematics and neural data affords an opportunity to relate brain activity to the behavior of the HDC as well as to what the human is doing. Behavioral results demonstrate that sensorimotor coordination influences judgements of cooperativeness and humanness. Analysis of brain dynamics reveals two distinct networks related to integration of visuo-motor information from self and other. The two networks overlap over the right parietal region, an area known to be important for interpersonal motor interactions. Furthermore, connectivity analysis highlights how the judgement of humanness and cooperation of others modulate the connection between the right parietal hub and prefrontal cortex. These results reveal how distributed neural dynamics integrates information from ‘low-level’ sensorimotor mechanisms and ‘high-level’ social cognition to support the realistic social behaviors that play out in real time during interactive scenarios.Significance StatementDaily social interactions require us to coordinate with others and to reflect on their potential motives. This study investigates the brain and behavioral dynamics of these two key aspects of social cognition. Combining high-density electroencephalography and the Human Dynamic Clamp (a Virtual Partner endowed with human-based coordination dynamics), we show first, that several features of sensorimotor coordination influence attribution of intention and judgement of humanness; second, that the right parietal lobe is a key integration hub between information related to self- and other-behavior; and third, that the posterior online social hub is functionally coupled to anterior offline brain structures to support mentalizing about others. Our results stress the complementary nature of low-level and high-level mechanisms that underlie social cognition.


2008 ◽  
Vol 95 (1) ◽  
pp. 66-87 ◽  
Author(s):  
Lorin S. Milescu ◽  
Tadashi Yamanishi ◽  
Krzysztof Ptak ◽  
Murtaza Z. Mogri ◽  
Jeffrey C. Smith

2004 ◽  
Vol 132 (2) ◽  
pp. 109-123 ◽  
Author(s):  
Ivan Raikov ◽  
Amanda Preyer ◽  
Robert J Butera
Keyword(s):  

2004 ◽  
Vol 91 (1) ◽  
pp. 542-554 ◽  
Author(s):  
Paul H. M. Kullmann ◽  
Diek W. Wheeler ◽  
Joshua Beacom ◽  
John P. Horn

The dynamic-clamp method provides a powerful electrophysiological tool for creating virtual ionic conductances in living cells and studying their influence on membrane potential. Here we describe G-clamp, a new way to implement a dynamic clamp using the real-time version of the Lab-VIEW programming environment together with a Windows host, an embedded microprocessor that runs a real-time operating system and a multifunction data-acquisition board. The software includes descriptions of a fast voltage-dependent sodium conductance, delayed rectifier, M-type and A-type potassium conductances, and a leak conductance. The system can also read synaptic conductance waveforms from preassembled data files. These virtual conductances can be reliably implemented at speeds ≤43 kHz while simultaneously saving two channels of data with 16-bit precision. G-clamp also includes utilities for measuring current-voltage relations, synaptic strength, and synaptic gain. Taking an approach built on a commercially available software/hardware platform has resulted in a system that is easy to assemble and upgrade. In addition, the graphical programming structure of LabVIEW should make it relatively easy for others to adapt G-clamp for new experimental applications.


Sign in / Sign up

Export Citation Format

Share Document